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Abstract 

This thesis describes the modeling and verification process for the stability and control 

analysis of the Condor hybrid-electric Remote-Piloted Aircraft (HE-RPA). Due to the 

high-aspect ratio, sailplane-like geometry of the aircraft, both longitudinal and 

lateral/directional aerodynamic moments and effects are investigated. The aircraft is 

modeled using both digital DATCOM as well as the JET5 Excel-based design tool.  

Static model data is used to create a detailed assessment of predictive flight 

characteristics and PID autopilot gains that are verified with autonomous flight test. PID 

gain values were determined using a six degree of freedom linear simulation with the 

Matlab/SIMULINK software. Flight testing revealed an over-prediction of the short 

period poles natural frequency, and  a prediction to within 0.5% error of the long-period 

pole frequency. Flight test results show the tuned model PID gains produced a 21.7% and 

44.1% reduction in the altitude and roll angle error, respectively.  This research effort 

was successful in providing an analytic and simulation model for the hybrid-electric 

RPA, supporting first-ever flight test of parallel hybrid-electric propulsion system on a 

small RPA. 
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MODELING, SIMULATION, AND FLIGHT TEST FOR AUTOMATIC FLIGHT 
CONTROL OF THE CONDOR HYBRID-ELECTRIC REMOTE PILTOED 

AIRCRAFT 
 

1 Introduction 

The effective use of Remote Piloted Aircraft (RPAs) for reconnaissance and 

surveillance requires a combination of good flight performance and low-observable 

capabilities. Of particular interest for the low-flying RPA is the necessary compromise 

between these characteristics necessitated by system design with conventional propulsion 

systems. The purpose of the Condor RPA is to develop a hybrid-electric proof of concept 

that mates the range and speed capabilities of a traditional Internal Combustion Engine 

(ICE) with the low-acoustic capabilities of an electric motor.  

 

The Condor program consists of two aircraft, one with a conventional ICE, and 

the second with the full hybrid-electric engine.  Each aircraft has a 12-foot wingspan, 

with wingtip extensions available to increase span to 15 feet for increased loiter 

performance. The fuselage and empennage sections are composed of composite 

fiberglass, with an aluminum-reinforced polystyrene main wing. The aircraft is in a high 

wing, conventional tail configuration, with tricycle landing gear. 

  

To effectively test the mission-capable potential of the CONDOR Hybrid-Electric 

Remote Piloted Aircraft (HE-RPA), the airframes will utilize a Procerus Technologies 

KestrelTM autopilot system, enabling the aircraft to climb, cruise, and loiter without pilot 
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interaction. For the Kestrel to effectively control the Condor aircraft, the aircraft must be 

effectively modeled, and proper gains input into the Kestrel autopilot system.  

The execution of this thesis was performed in cooperation with Ausserer, Engligh, 

and Molesworth, as part of the systems engineering proof of concept for an HE-RPA 

system (Ausserer, 2012; English and Molesworth, 2012). The completion of flight tests 

of the Condor AC2 aircraft would demonstrate the first successful flight of a parallel 

hybrid-electric configuration RPA. The Ausserer thesis encompasses the integration of 

commercial-off-the-shelf (COTS) components that make up the propulsive system 

(Ausserer, 2012). The project management and aircraft development process was 

executed by English and Molesworth, and also includes the aircraft evaluation for long-

loiter, quiet operations (English and Molesworth, 2012).  

 

1.1 Problem Statement 

This research intends to model the Six Degree of Freedom (6-DOF) aircraft 

Equations of Motion (EOM) for the Condor aircraft, and effectively set the Kestrel 

autopilot gains based on the predicted EOMs. With a successful programming of the 

Kestrel autopilot, the Condor aircraft should be able to climb, cruise, and loiter over a 

designated target without pilot interaction. The aircraft must maintain the determined 

altitude, as well as demonstrate Level 1 handling qualities, as determined by the MIL-

STD-1797A. Successful completion of this tuning process, in conjunction with the 

research and development by the other Condor team members, will enable the first ever 

flight of a parallel HE-RPA. 
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1.2 Scope and Assumptions 

Due to the high aspect ratio of the Condor aircraft, it is necessary to investigate 

both the longitudinal and lateral-directional stability modes of the aircraft. For this 

reason, computational analysis will be compared to in-flight data for modal instability. 

All analysis assumes a steady, level flight condition, with no changes in pitch, roll, or 

throttle command. The aircraft modes of primary concern are the short period, Dutch roll, 

and spiral modes, as these are the most likely to cause significant flight performance 

problems. Flight test results will be used to further refine the Kestrel autopilot gains, in 

order to improve the aircraft handling qualities. 

 

1.3 Research Objectives 

The objectives of this research are two-fold. The first objective is to develop an 

accurate aircraft model and simulation. This model will be used to evaluate the predicted 

open-loop performance of the aircraft in both the longitudinal and lateral-directional 

dynamics. The predicted analysis for the base aircraft drives the determination of 

autopilot gains for the Kestrel system. Once the primary gains have been selected, the 

second objective of the research is to compare the in-flight data with predicted values for 

further tuning. This comparison will enable the fine-tuning of the aircraft gains to better 

predict future models as well as improve mission command and control of the Condor 

aircraft. 
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1.4 Outline 

This thesis consists of background information, analytical processes, analysis and 

flight test results, and finally conclusions and recommendations. The background 

information section consists of a literature review of relevant research as well as an 

overview of mathematical and aeronautical principles and techniques that will be utilized 

in the development of the autopilot gain determination. The analytical process section 

discusses the determination of the 6-DOF aircraft model, as well as the process of setting 

PID gains by consecutive loop closures. The results section lays out the findings of the 

iterative process of gain determination throughout the flight testing.  Finally, the 

conclusion section will analyze the results and discuss ramifications and future 

recommendations for continued study.  
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2 Background 

2.1 Chapter Overview 

The military demand for Small Remote-Piloted Aircraft (S-RPA) reconnaissance 

platforms has created a wealth of knowledge in the fields of modeling, stability and 

control. This section details the most important research, methods, models, and concepts 

for development of the Condor model. 

 

 

 

2.2 Literature Review 

Of the vast expanse of current RPA research, a surprisingly small niche can be 

directly related to the Condor, due to its glider-like configuration and wing loading. The 

theses most integral to the development of the Condor model are discussed below. 

 

2.2.1 Procerus Kestrel© Development 

The most significant factor in modeling the Condor aircraft is the integration with 

the Kestrel® autopilot system. The prototype Kestrel autopilot system was developed in 

2004 by Reed Christiansen at Brigham Young University (Christiansen 2004).  In this 

model, he utilizes Proportional-Integral-Derivative (PID) gain loops for the aircraft 

feedback in both the longitudinal and lateral modes (Stryker 2010). These simple loops 

were expanded upon by the addition of feed-forward parameters and additional control 

logic to allow for multiple tail configurations, as well as the fine-tuning capability for a 

wide range of small RPAs (Christiansen 2004). The Kestrel® throttle, longitudinal and 

lateral control designs can be seen below in Figure 1, Figure 2 and Figure 3. 
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Figure 1: Kestrel Throttle Control (Christiansen, 2004) 

 

 
Figure 2: Kestrel Longitudinal Control (Christiansen, 2004) 

 

 
Figure 3: Kestrel Lateral Control (Christiansen, 2004) 
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2.2.2 USAFA JET5 Design Tool 

The ElectricJet Designer v5.55 aircraft design tool was created by Dr. Steven 

Brandt at the United States Air Force Academy, for use in prototype aircraft design 

(Brandt 2011). Although originally written in other programming languages, this now 

excel-based program is able to rapidly model and predict basic aircraft static and dynamic 

stability, as well as aircraft performance, drag polars, mission analysis, and weight 

calculations. The current iteration of the model used for this analysis has been adapted 

from the Jet Designer v5, focused on full-scale turbine-powered aircraft to predict flight 

characteristics for small, electric RPAs. Future references to the ElectricJet Designer will 

more simply refer it to Jet5. Use of the Jet5 software enables the user to input basic 

geometric, aerodynamic and propulsive data for an airframe, and receive back critical 

stability, performance, and weight calculations (Brandt, 2011). The use of Jet5 drastically 

reduces the time required to effectively predict the basic static and dynamic 

characteristics of S-RPA. The Results from the Condor Jet5 analysis proved far more 

accurate, and much simpler to work with than the Air Force standard program Digital 

DATCOM. The Jet5 Modeling tool references the McRuer (1973), Roskam (1979), 

Yechout (2003), and Brandt (2004) text as the basis for calculations. 

 

2.2.3 SIG Rascal Program 

The SIG Rascal was fully characterized by Captain Nidal Jodeh, USAF in his 

2006 AFIT Thesis (Jodeh, 2006). The Jodeh research demonstrated effective 

determination of S-RPA Moment of Inertia (MOI) data by measurement of the period of 

oscillation when hung like a pendulum (Jodeh, 2006). The overall characterization of the 
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SIG platform was determined for use with the Piccolo® autopilot, but were transposed for 

use with the Kestrel® by S. Farrell in 2009 (Farrell 2009). The SIG Rascal is the closest 

comparative model available for demonstrating approximate flight characteristics of the 

Condor aircraft, and thus the tuned SIG gains developed by Jodeh, and Farrell, were 

adopted as the baseline gains for the Condor PID until the predictive gains could be 

proven (Farrell 2009; Jodeh, 2006). 

 

 

Figure 4: SIG Rascal 110 (Farrell, 2009) 
 

 

2.2.4 AFIT OWL 

Captain Andrew J Stryker, USAF, characterized the AFIT OWL MAV as part of 

his Master’s thesis at the Air Force Institute of Technology (Stryker, 2010). Stryker’s 

research provided a comprehensive explanation of the methods and difficulties associated 

with tuning the Kestrel® autopilot to a new airframe. From Stryker’s recommendations, 

the determination was made to fully model the Condor aircraft prior to flight, rather than 

attempting in-flight PID tuning via the Zeigler-Nichols method (Stryker 2010). The 

Stryker AFIT OWL model was derived primarily from Jacques’ A-4 Skyraider model, in 
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conjunction with the McRuer and Nelson texts. (Jacques, 1995; McRuer, 1973; Nelson, 

1998). The Jacques and Stryker models are both limited only to the longitudinal motion 

of the aircraft, due to the focus of their research being altitude-specific control (Jacques, 

1995; Stryker, 2010). For this reason, the AFIT OWL model was only utilized as the 

basis for the longitudinal modeling and control of the Condor.  

 

 
Figure 5: AFIT OWL (Stryker, 2010) 

 

2.2.5 Naval Postgraduate School SUAS Modeling.  

The 2008 Naval Postgraduate School (NPS) RPA modeling thesis by Chua Choon 

Seong provides a wealth of comparative data on current RPA systems. Choon Seong 

analyzed the SIG Rascal, Silver Fox, P10B Pioneer, Bluebird, and FROG aircraft in order 

to demonstrate the variance of aircraft stability parameters depending on the methods of 

calculation and geometric differences (Choon Seong 2008). The resulting data from his 

research provides arguably the most comprehensive collection of S-RPA stability 

parameter data available, and was absolutely vital in the evaluation and validation of the 

calculated values throughout the Condor modeling process.   
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2.2.6 Nelson Text 

Robert C Nelson’s Flight Stability and Automatic Control serves as a detailed yet 

succinct resource for calculating most basic aircraft stability parameters. Basic aircraft 

dynamic modes and automated control are likewise discussed, in conjunction with many 

“back of the envelope” methods for model verification and estimation (Nelson, 1998). 

The reputable traditional aircraft models discussed in Nelson’s text were used to develop 

the Condor lateral/directional model. Aerodynamic data and the state-space model from 

the Navion aircraft were used extensively as a benchmark for comparative analysis and 

high-level verification for the initial Condor models (Nelson, 1998). 

 

2.3 Aircraft Description 

2.3.1  Missions 

The primary mission of Aircraft #1 (AC1) is to demonstrate the flight 

characteristics of the 30 lb, 12-foot flight configuration, and to validate the numerical 

model for autopilot tuning. Analysis of the 15-foot wingspan is also investigated, but to a 

lesser extent than AC1, due to the decreased importance of flight endurance as a program 

objective. AC1 is then used to fine-tune the Kestrel© autopilot gains at the predicted 

weight. Once sufficient confidence in the aircraft stability has been achieved, AC1 will 

be adapted to maximize flight duration and minimize the acoustic signature. 
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Aircraft #2 (AC2) is the full Hybrid-Electric (HE) engine configuration. The 

Mission of AC2 is to analyze the potential for use of HE systems in UAV aircraft, both 

from mission longevity, efficiency, and acoustic standpoints. All non-propulsion 

variables, such as center of gravity and weight configurations for AC2 are almost 

identical to that of AC1, allowing a direct transfer of the mathematical model and Kestrel 

PID gains. 

 

2.3.2 Design 

The Condor aircraft was designed and constructed by CL Max Engineering, a 

Colorado-based UAV design firm. The aircraft is designed for a 30 lb flying weight and 

12 foot wingspan, with 1.5 foot wingtip extensions available if desired. This weight and 

high-aspect ratio configuration was chosen for the sailplane-like characteristics of low 

speed, long-endurance and low acoustic flights. Both airframes are designed and 

weighted to the specification of the full HE engine configuration, despite Aircraft #1 

being driven by a standard Internal Combustion Engine (ICE). The basic aircraft 

parameters are shown in Table 1, along with a view of the AC1 prototype shown in 

Figure 6. 
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Table 1: Aircraft Configuration 

 
 
 

 
Figure 6: Condor S-RPA in AC1 Configuration 

 

System Description 

Engine  35cc Honda ICE (AC1) or 25cc Honda ICE and Electric (AC2) 
Aircraft Weight  30lbs (optimal) 50lbs (maximum) 
Wings  12 ft wingspan with extensions to 15ft 

 Eppler 210 airfoil with 1 ft chord 
 Wing Area 12ft2 or 15 ft2 

Fuselage  Tapered 6”x4” fiberglass-covered foam layup.  
 Length 4.83 ft (including engine) 

Tail configuration  Low-cruciform tail 
 NACA 0009 airfoil with 9in chord, 25% control surface 
 Horizontal Stabilizers 18in span 
 Vertical Stabilizer 15in span 

Landing Gear  Convention configuration with optional drop-away main gear 
 Steerable tail-wheel electronically linked to rudder control 

Aircraft Controllers  Futaba R6008HS and Procerus Technologies Kestrel© v2.4 
Ground Control Station  Procerus Technologies Virtual Cockpit v2.0 and Futaba Controller 
Predicted Airspeeds 
(at 30 lbs) 

 Vs0 = 24 mph 
 VTO = 20 mph 
 VNE = 80 mph 
 VA = 65 mph 



13 

2.4 Definitions and Convention 

2.4.1 Body Axis Convention 

Because the focus of stability and control is on the aircraft reactions to external 

moments and forces, the relative position of the aircraft is insignificant in the analysis. 

For this reason, the Body-Axis reference frame is chosen for analysis. The Body-Axis 

reference frame is based at the Center of Gravity (cg). The coordinate system consists of 

orthogonal X, Y, and Z axes, where the X axis travels from the nose to tail of the aircraft, 

the Y axis along the span of the wings, and the Z axis vertically. Rotations about these 

axes are measured in the angles L(roll angle), M (pitch angle) and N (yaw angle). The 

corresponding velocities along these axes are u, v, and w, and the moments about the axes 

are p, q, and r, respectively. A depiction of the right-hand body axis coordinate frame can 

be seen below in Figure 7. 

 

 
Figure 7: Body-Fixed Reference Frame 
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2.4.2 Wind Axes and Euler Angles 

The wind axes for the aircraft are relative to the body reference frame, and consist 

of the angle of attack and angle of sideslip values α and β, respectively. When it is 

necessary to relate the body reference frame to the earth or another frame, a set of angles 

between the two frames are described by the Euler Angles. Table 2 shows the Society of 

Flight Test Engineers definitions for the Euler Angles. 

 

Table 2:  Euler Angle Definitions (Gardner, 2001) 

 

2.4.3 Moments and Accelerations 

Mathematical modeling of aircraft flight dynamics is made possible by the 

expression of the aircraft movement in terms of the linear and rotational accelerations 

about the 6 degrees of freedom on the body reference frame. Each of these accelerations 

is generally expressed as acceleration about or along an axis. Using this symbology, 

acceleration of the aircraft along the x axis due to the change in velocity (u) is written as 

Xu. Table 3 below shows the 6-degree of freedom accelerations used for longitudinal 

stability, and Table 4 the lateral/directional accelerations for conventional aircraft. 

(Stryker 2010). Derivations and approximations for these variables can be found in 

Nelson (1998), McRuer (1973), Yechout et.al (2003), and most notably Roskam (1979). 

Angle Description 
Ψ Yaw angle: The angle between the projection of the vehicle x 

axis on the horizon plane and the reference x axis. If a North-
East-Down (NED) frame is used,  ψ is the heading angle 

Θ Pitch angle: The angle in the vertical plane between the body x 
axis and the horizon 

Φ Bank angle: The angle between the body y axis and the 
horizontal reference plane as measured in the y –z plane. Also 
known as the Roll angle. 
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Table 3:  Aircraft Longitudinal Definitions (Nelson, 1998 p.123) 

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 4: Aircraft Lateral/Directional Derivatives 

Variable Description 
   x acceleration due to change in u 
   x acceleration due to change in w 
   z acceleration due to change in u 
   z acceleration due to change in w 
    z acceleration due to change in w velocity 
   z acceleration due to change in α 
    z acceleration due to change in α velocity 
   z acceleration due to change in w velocity 
    z acceleration due to change in elevator angle 
   Pitch moment due to change in u 
   Pitch moment due to change in w 
    Pitch moment due to change in w velocity 
   Pitch moment due to change in  α 
    Pitch moment due to change in  α velocity 
   Pitch moment due to change in Q 
    Pitch moment due to change in elevator angle 

Variable Description 
   Pitch acceleration due to change in v 
   Pitch acceleration due to change in roll 
   Pitch acceleration due to change in yaw 
   Roll acceleration due to change in v 
   Roll acceleration due to change in roll 
   Roll acceleration due to change in yaw 
   z acceleration due to change in α 
   z acceleration due to change in α velocity 
   z acceleration due to change in w velocity 
    z acceleration due to change in elevator angle 
    Pitch moment due to change in u 
    Pitch moment due to change in w 
    Pitch moment due to change in w velocity 
    Pitch moment due to change in  α 
    Pitch moment due to change in  α velocity 
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2.5 Airframe Stability 

The first major division in aircraft stability analysis is between the static and 

dynamic stability of the aircraft. Yechout (2003) describes static stability as the “initial 

tendency of an aircraft to develop aerodynamic forces or moments that are in the 

direction to return the aircraft to the steady state position” following a perturbation from 

the steady state (p.173). The important differentiation that must be made between static 

and dynamic stability is that static stability is only the initial and thus time-independent 

stability. In contrast, dynamic stability is the time response analysis of an aircraft’s ability 

to return to the steady state. This is shown pictorially below in Figure 8. 

 

 
Figure 8: Static and Dynamic Stability (Nelson, 2008 p.39) 

 

2.5.1 Static Stability Analysis 

The static stability for conventional aircraft is most dependent upon the relative 

positions of the aircraft center of pressure and center of gravity. In order for an aircraft to 

be statically stable, the center of gravity must be forward of the center of pressure 
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(Yechout, 2003). Likewise, the aerodynamic moments caused by the control surfaces 

following a perturbation must generally cause a restoring moment. For this to be 

achieved, the stability derivatives in Table 3 and Table 4 must take the appropriate sign.  

 

To further refine the static stability of the aircraft, a balance must be reached 

between each aircraft force and moment. This is achieved by utilizing the USAFA/Brandt 

JET5 software, capable of not only modeling the aircraft layout and weight configuration, 

but the balance between longitudinal and lateral/directional derivatives. A screenshot of 

the Condor model in Jet5 is shown in Figure 9. For specific information on static stability 

derivatives, Yechout Chapters 5-6 and Nelson Chapter 2 both provide comprehensive 

explanations (Yechout, 2003), (Nelson, 1998). 

 

 
Figure 9: USAFA/Brandt Jet5 Aircraft Modeling Program 
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2.5.1 Dynamic Aircraft Stability Modes 

Of primary concern for dynamic stability of conventional aircraft are the 

oscillatory longitudinal and lateral modes. For longitudinal analysis, this can be found in 

the short period and long period, or Phugoid modes. In lateral-directional analysis, there 

is usually only the Dutch roll mode, as the roll and spiral modes are generally non-

oscillatory (Nelson, 1998). The critical information regarding the behavior of these 

modes can be deduced by focusing on the poles of the transfer function shown in 

Equation 2.4. When factored into this specific format, the natural frequencies of the short 

period (   ) and Phugoid (   , as well as the corresponding damping ratios ζsp and ζp 

are easily calculated. This is similarly true for the lateral-directional Dutch Roll mode. By 

evaluating the frequency and damping of each mode, a basic assessment of the open-loop 

dynamic stability can be made (Yechout 2003). Approximations for the Short Period and 

Phugoid natural frequencies can be found by using Equations 1 and 2 (Stryker 2010). 

      
     

    
 (1) 

        
   

  
 (2) 

 

2.5.2 State-Space Representation 

The most common method of developing and analyzing an aircraft model is by 

utilizing state-space representations (Stevens 2003). The basic aircraft linear state-space 

model is comprised of the plant matrix A, input matrix B,  filter matrix C and disturbance 

matrix D, as well as the state vector x, input vector u and output vector y. For the 
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simplified model being used in the Condor analysis, the D matrix and the associated gusts 

or disturbances are neglected. This ultimately simplifies the state-space representation for 

the input-output relationship of the Condor simulations to Equations 3 and 4. In order to 

express this relationship in a frequency-observable layout, Equation 5 is used to convert 

the state space equations into transfer function format.  By then selecting a single input 

and output from the u and y vectors, the specific response to a particular type of input can 

be parsed. This input-output relationship is shown in Equation 6 and is formatted to allow 

easy depiction of the specific frequencies and damping factors associated with the 

position of the poles and zeroes corresponding to that particular relationship (Ogata, 

2001). 

 

           (3) 

       (4) 

                       (5) 
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The validated state-space models used in the Condor analysis are shown below in 

Equations 7 and 8.  These models were created by Roskam, refined by Jacques for use 

with his dissertation on aircraft terrain following, and adapted to SUAS systems in 

Stryker’s 2010 thesis on the AFIT OWL stability and Control (Roskam, 1979; Jacques, 

1995; Stryker 2010). This state-space representation is able to encompass the set of five 

coupled equations of longitudinal motion for the aircraft. For example, the first row of 
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Equation 7 demonstrates that the rate of change in the forward velocity is equal to the 

scaled sum of the current horizontal velocity, vertical velocity, and flight path angle at 

that moment in time. This formatting allows for the simultaneous solving and simulation 

of the system of equations, as well as the ability to visually determine effects on the 

aircraft input-output relationship through stability parameter adjustment. 
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2.6 Kestrel Autopilot Tuning 

In order to utilize feedback control, the Kestrel autopilot system uses three levels 

of controlling action.  Level 1 loops control basic aircraft stabilization. They consist of 

the aircraft angles and rates, such as the pitching rate, yaw angles, and throttle position. 
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Level 2 loops allow for the autopilot to perform more advanced tasks, such as following 

headings and maintaining altitudes. Finally, the feed-forward parameters allow for 

trimming the aircraft to specific flight conditions, and smoothing out the autopilot 

commands by placing limitation on servo rates and positions (Stryker 2010). 

Furthermore, the Kestrel system is capable of flying in a “manual mode” where only 

level 1 1oops are enabled, allowing the pilot to fly with a stability augmentation system, 

while still maintaining directional control. The level 1 and level 2 control loops can be 

seen in Figure 10, with the level 1 loops shown as the two innermost feedback loops.  

 

 
Figure 10: Kestrel Level 1 and 2 Feedback Loops 

 

2.6.1 Longitudinal Control 

Longitudinal control for the Kestrel is composed of two levels of control feedback 

loops that must be tuned for effective control. The pitch and pitch rate loops comprise the 

level 1, and the altitude and airspeed hold are the level 2 loops. Proper tuning of these 

loops can be accomplished using simulated or actual pitch perturbations. The difficulties 
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with tuning the longitudinal parameters arise when shifts in the center of gravity due to 

cargo loading change the aircraft longitudinal moment of inertia. For this reason, weight 

and location limits for fuel and cargo capacity are critical for effective autonomous flight.  

 

2.6.2 Lateral/Directional Control 

The Kestrel lateral/directional control consists of the roll, roll rate, and yaw rate 

level 1 loops and the heading level 2 loop. Due to the significant aerodynamic coupling 

for large wingspan aircraft such as the Condor, determining efficient PID values for the 

lateral aircraft control is considerably more difficult than it is for the longitudinal modes. 

In contrast, the longitudinal stability analysis can often be completed by a test flight of 

the aircraft to determine effective PID values. The additional coupling of the longitudinal 

modes dictate that an approximation of the lateral values should be made through 

simulation prior to flight testing. 

 

2.7 Flight Test Organization 

Due to the fact that the Condor is a custom-build airframe, no prior testing for 

safety or performance measures have been conducted. Thus determination of its flight 

characteristics must follow a set of safe, pre-determined procedures. The procedures used 

in the analysis of the Condor flights are derived from those used by Stryker (2010), and 

Jodeh  (2006), and utilize techniques discussed in Nelson (1998), Yechout (2003), and 

Roskam (1979). 
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2.7.1 Flight Test Objectives 

The most critical flight test data for this project is aircraft telemetry that facilitates 

validation of the predictive PID values. Correct PID values enable the aircraft to fly in an 

efficient, stable configuration, to include autonomous flight. To accomplish this it is 

important to first determine the open-loop characteristics, such as pertinent airspeeds and 

modal characteristics. It is then possible to update the mathematical aircraft model to 

predict more accurate PID gains prior to the in-flight tuning process. The third level of 

test objective is the performance level. These objectives consist of determining the 

operational capabilities of the aircraft, such as loiter time, climb performance, and 

acoustic signature levels. 

 

2.7.2 Test Range Requirements 

Due to current FAA regulations, corporations and government organizations are 

limited to restricted airspace for testing of autonomous vehicles. For this reason, the 

Condor aircraft are tested at Camp Atterbury in Edinburgh, Indiana. This location allows 

for undisturbed flights of greater than two hours, with a mitigated risk of personal or 

property damage in the event of an accident. The flight test range at Camp Atterbury is 

shown below in Figure 11. 

 



24 

 
Figure 11: Camp Atterbury Flight Test Range 

 

2.8 Chapter Conclusion 

This brief background discussion detailed the background research, and processes 

necessary for effective modeling, tuning, and flight testing of the base and hybrid-electric 

Condor Aircraft. The utilization of the Procerus Technologies Kestrel autopilot 

significantly simplifies control the model and flight testing, provided that an effective 

mathematical model can be determined. 
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3 Methodology 

3.1 Chapter Overview 

The process for determining a suitable mathematical model for the Condor is very 

iterative in nature, based upon the high degree of accuracy needed for the autopilot to 

effectively operate. Based on the loiter mission for the Condor, a significantly greater 

effort was spent ensuring the longitudinal stability and ability to maintain and track 

altitudes. The major goals of the modeling process included the following.  

 Based on geometric and historic data, determine static stability derivatives 

 Develop longitudinal and lateral control loops to simulate Kestrel control  

 Using successive loop closures, determine flying PID gains 

 Verify flightworthiness of aircraft in both configurations 

 Flight Test AC1 

 Refine model to reflect flight test results 

 Explain the necessary changes to the model 

 Adapt model to accommodate differences in AC2 

This process was made significantly more difficult due to the lack of engineering designs 

and aircraft data from the manufacturer. As a result, all calculations started with basic 

aircraft geometry and physically measured values.  
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3.2 Aircraft Static Modeling 

Three different modeling software packages were used to predict the basic aircraft 

stability parameters. While it was not the original intent, difficulties with the initial 

approaches to the aircraft modeling process necessitated finding software that could 

effectively and expediently model the aircraft.   

 

3.2.1 The CLMax Xplane Model 

 The first model of the Condor aircraft was developed by the manufacturer, 

CLMax Technologies, in accordance with the AFIT specifications. The design was 

driven by the parameters discussed in Harmon’s work on optimization of an aircraft 

design for use with an HE system (Harmon et al, 2006). In order to physically model the 

aircraft, CLMax chose to model in CAD, and then transpose the design into the computer 

flight simulator Xplane®. Xplane® utilizes the blade element theory to predict actual 

flight characteristics. Unfortunately, any information beyond the basic geometric model, 

which was deemed under-detailed, was claimed as proprietary. Using the model that was 

provided, and converting from the left-handed coordinate system, the team was able to 

determine the three Moments of Inertia (MOI) calculations from the CLMax Xplane® 

model. These MOI values can be found in Table 6. Limitations in the software available, 

as well as the reliability of the model, forced the use of other models for further static and 

dynamic stability determination. 
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3.2.2 USAF Open Digital DATCOM 

Digital DATCOM is a FORTRAN-based software package developed as a 

digitized version of the Air Force’s DATCOM aircraft design manual. DATCOM 

encompasses all of the expected design parameters for a conventional aircraft, and is the 

primary tool utilized in the DOD for aircraft digital modeling. Unfortunately, Digital 

DATCOM is written in FORTRAN, an older programming language that has not been 

updated to a more modern code. OpenAE, an open-source variant of Digital DATCOM, 

utilizes a user-friendly Graphical User Interface (GUI), making the data interface much 

simpler. The OpenAE program is able to convert simple graphical user options and 

variables into the desired FORTRAN code, and then run the code as well. 

 

Using OpenAE involves constructing the aircraft using the known geometric data, 

center of gravity, and any airfoil or engine information available. Figure 12 below shows 

a sample screen from the OpenAE GUI. The standard output file for the Digital 

DATCOM is a series of text files encompassing all requested stability derivatives, 

processes, and MOI data.   
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Figure 12: OpenAE DATCOM Screenshot 

 

Several significant shortcomings were immediately apparent from the initial data 

output from the DATCOM. First is the inability of Digital DATCOM to model 

rectangular cross-sectional surfaces, such as fuselages and wing sections. As a result, the 

12-foot configuration of AC1 was modeled using an oval fuselage cross-section, thus 

reducing the fuselage effect on stability and control. Secondly, and most importantly, 

Digital DATCOM is unable to model a closed fuselage, as well as prop effects. As a 

result, the output data from DATCOM, shown below in Figure 13, yields unrealistic 

predictions for the aircraft rolling and yawing stability derivatives (CYβ, CNβ, and CLβ) , 

and under-predicted lift and over-predicted drag calculations (CL and CD, respectively).  
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Figure 13: Digital DATCOM Stability Output 

 

The prop and engine modeling problem only became apparent with the use of 

Embry Riddle University’s DATCOM 3-d Viewer, which uses the DATCOM geometric 

data to form a Matlab three-dimensional image of the aircraft (Greiner, 2008).The ERAU 

Matlab® code can be found in Appendix C. The Condor in the 12-foot AC1 configuration 

output file is shown in Figure 14 below. Despite repeated attempts to correct the errors in 

simulation, the aforementioned problems continued to cause detrimental effects on the 

outputs, and the use of DATCOM-based software was abandoned.  

 

 
Figure 14: Embry-Riddle 3-D View of Condor AC1 DATCOM Model 
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3.2.3 USAFA Jet5 Aircraft Design Tool  

Use of the Jet5 design tool allows for the basic modeling and weight distribution 

needed to determine the fundamental stability derivatives. Because the Jet5 software is a 

composition of multiple texts in one Microsoft Excel spreadsheet, the accuracy of the 

results are highly dependent upon the fidelity applied to creating the model. Thus for a 

highly-accurate aircraft model, significant attention must be paid to ensuring the accuracy 

of the input parameters. 

 

Geometry  

In order to start on the correct scale of aircraft, Dr. Brandt of the US Air Force 

Academy provided the latest Electric RPA version of the Jet5 software shell. The pre-

scaled nature of the software shell allowed minimal necessary change to scaling 

parameters such as Reynolds Number effects, which would have been required if 

adapting the code from the full Jet Designer software. The two most limiting factors in 

utilizing the Jet5 software were the adaptation of an ICE as the engine, and the definition 

of the base airfoil. Due to the modeling limitations of Jet5, the NACA 2412 airfoil was 

used in place of the Eppler 210. This substitution causes little change in the static or 

dynamic model of the aircraft, as the moments caused by the airfoil shape are negligibly 

different. There are slight performance differences between the two that will be discussed 

later. 

 



31 

 The ability to define multiple geometric configurations allows Jet5 to more 

accurately depict the fuselage section, resulting in a highly accurate scale model of the 

physical aircraft fuselage.  Likewise, Jet5 assumes a closed surface at the engine face, 

thus negating the two major flaws in the Digital DATCOM tests. The geometric design 

page for the 12 foot ACI configuration is shown below in Figure 15. The resulting 

secondary geometric wing and control surface data output is shown in Figure 16. 

 

 
Figure 15: Jet5 Design of 12 Foot Span AC1 Configuration 
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Figure 16: Condor Geometric Data for Wings and Control Surfaces 

  

Weight  

Once the basic geometry is defined, the vehicle weight distribution and center of 

gravity must be entered into the “Weight” tab. The critical area of interest from the Jet5 

“Weight” Tab is shown below in Figure 17. The “permanent payload” referenced below 

is the ballasted weight in AC1, used to simulate the additional weight of electronics, 

motor, and additional batteries that are necessary for the Hybrid Electric System. The 

individual component weights can be found in Joseph Ausserer’s Integration, Testing, 

and Validation of a Small Hybrid-Electric Remotely Piloted Aircraft (Ausserer, 2012). 

For the requirements of Jet5, the combined component packages are assumed to be one 

mass, with a constant center of gravity, and focused directly under the wing section, at 

roughly 1.5 feet from the nose of the aircraft. 
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Figure 17: Jet5 “Weight” Tab for 12-Foot AC1 Configuration 

 

Engine 

 Defining the Condor power plant required hard-coding of predictive thrust values 

and component weights to properly model the aircraft. This is because the current release 

of Jet5 is tailored to an electric-only ducted-fan style RPA model. The correction to adapt 

the original JET5 to electric configuration mandated the scaling of the turbojet 

configuration to an R/C scale aircraft and replacing fuel with a constant battery weight. 

As a result, the electric ducted fan “turbojet” is modeled as a small square block with the 

dimensions of the AC1 35cc Honda ICE. Hard-coding of thrust and fuel burn values into 

the Jet5 program voids the accuracy of mission duration and range-type predictions, but 

allows a much simpler approach to calculating basic performance airspeeds and flight 
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capabilities. Equation 9 below shows the approximation used to convert a horsepower 

rated engine, in this case rated at 1.3 SHP for the Honda 35cc ICE, into propeller-

generated thrust (Ausserer, 2012). The low-subsonic flight regime of the Condor allows 

for the propeller efficiency factor, ηP, to be approximated at 0.9.  The thrust-specific fuel 

consumption can then be calculated by referencing the engine fuel burn rate, and is 

shown in Equation 10. The final hardcoded inputs into the Jet5 software engine data are 

shown in Figure 18. 

         
 

   

  

 
 (9) 

      
   

 
 (10) 

 
Figure 18: Jet5 AC1 Engine Model 

 

Stability and Control  

The completion of the basic modeling of the Condor geometry and engine data 

allows for a first look at the static stability and controllability analysis. Utilizing a variety 

of equations found in Roskam (1979), Raymer (1999), and Brandt et al (2004), Jet5 is 

able to output the first detailed predictions of some vital static stability derivatives, shown 

in Figure 19.  
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Figure 19: Jet Condor Stability Data 

 

The most critical values for continuation of the project without design changes are 

the static margin, CNβ, Clβ, and the ratio between them, 
   

   
. The static margin alludes to 

the longitudinal stability, and is based upon the distance between the center of gravity 

and aerodynamic center. CNβ is an indicator of the aircraft’s natural ability to weathercock 

out of a sideslip, and Clβ is an indicator of the aircraft’s tendency and direction of roll 

when a sideslip occurs. The ratio 
   

   
 is necessary to determine the overall aircraft 

response to a lateral-directional perturbation. A ratio less in magnitude than 1/3 will 
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indicate an aircraft’s tendency to “Dutch roll” or weave back and forth, much like a 

figure skater whereas a ratio greater in magnitude than 2/3 will indicate a tendency to 

enter a spiral mode (Brandt 2004). Figure 20 and Figure 21 display the Jet5 stability 

predictions for the aforementioned parameters for the initial 12 and 15-foot Condor 

Configurations. 

 

 
Figure 20: Jet5 Stability for 12 Foot Condor 

 

 
Figure 21: Jet5 Stability for 15 Foot Condor 

  

As the red highlighted areas indicate, the predicted weather-cocking stability 

parameter CNβ values is lower than acceptable in both configurations. A CNβ value of 

greater than 0.001 is necessary for traditional aircraft static stability in the yaw direction. 

The 12 foot configuration is within the probable error of the minimum value, and could 

be acceptable; however the 15 foot span would significantly suffer if left uncorrected. 

The simplest fix to this problem is to increase the size of the vertical stabilizer of the 

aircraft (Brandt 2004). Fortunately, the manufacturer provided interchangeable tail 

sections, and thus the 18 inch horizontal stabilizer from a spare aircraft can be used in 

place of the smaller vertical stabilizer. Figure 22 and Figure 23 show the corrected 

configurations for the 12 and 15 foot span. Although the 15 foot span configuration is 

still not within desired limits, the additional tail volume has brought it within an 
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acceptable range of the target value. The Condor team determined that flight of the 15-

foot configuration was a secondary objective of the project, and thus further design and 

fabrication of a larger tail for this configuration was unnecessary.  

 

 
Figure 22: Jet5 Corrected Stability for 12 Foot Condor 

 

 
Figure 23: Jet5 Corrected Stability for 15 Foot Condor 

 

Performance.  

The last major predictive contribution made by Jet5 was the output of numerous 

performance data points, necessary in determining critical aircraft airspeeds and 

performance expectations. Figure 24 below shows the Condor 12 foot configuration 

expected drag polar at 1000 feet Mean Sea Level (MSL). The airspeeds in Table 5 are 

determined using techniques found in Introduction to Aeronautics: A Design Perspective 

by Brant et al (2003). The lower airspeed values can be expected to decrease slightly in 

flight test, due to the differences in trailing edge surfaces between the Eppler 210 and 

NACA 2412 airfoils. Likewise, the maximum airspeed will most likely fluctuate from the 

predicted, due to differences between the Ausserer test results and the published Honda 

data on the 35cc ICE (Ausserer, 2012). 
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Figure 24: Condor 12 Foot Wingspan Drag Polar 

 
Table 5: Condor Predicted Airspeeds 

  
 

 

 

 

3.3 Moment of Inertia Analysis 

The dynamic stability and tuning of the aircraft autopilot is highly dependent 

upon the accuracy of the Moment of Inertia calculations. In order to verify realistic 

values, two methods of calculation were used: The CL Max Xplane analysis and the 

Space Electronics MOI analysis, to be discussed subsequently. The results of these testes 

were then compared to similar scale aircraft from data found in Choon Seong’s NPS 

research (Choon Seong, 2008). 

  

Description Airspeed 
Stall Airspeed 24.3 Mph (35.7 ft/s) 

Takeoff Airspeed 27.3 Mph (40.1 ft/s) 
Max Endurance 34.6 Mph (50.8 ft/s)  

Max Range 47.7 Mph (69.9 ft/s) 
Max Level Speed 63.0 Mph (92.3 ft/s) 
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3.3.1 CLMax Xplane Analysis.  

The manufacturer of the Condor aircraft was able to provide an Xplane© model of 

the Condor that was accompanied by a set of MOI data. Because the aircraft was 

designed using a left-handed coordinate system, a re-labeling of axes was required to 

match the convention shown in Figure 7. Simply re-labeling the axes is mathematically 

acceptable, provided the restriction that only the moments, and not products of inertia are 

transformed to the right-handed reference frame. Additional data regarding the detail of 

calculation and modeling incorporated into the Xplane© model was considered 

proprietary, requiring additional MOI testing for verification of the provided results. 

 

3.3.2 Space Electronics MOI Calculation.  

Utilizing a Space ElectronicsLLC XR250 MOI device provided a much more 

precise measurement of AC1 MOIs. The XR250 is able to calculate object moments of 

inertia to an accuracy of ±0.002 lb-in2. This accuracy, however was degraded by the 

setup required to handle the expansive size of the fully assembled AC1. The test stand 

shown in Figure 25 was created to effectively mount the Condor aircraft and allow it to 

rotate about the three primary flight axes for the XR250 calculation. 
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Figure 25: MOI Device Aircraft Mount 

 

In order to determine the aircraft pitching MOI, the wings had to be removed, as 

the wingspan exceeded the height of the measuring device. This measure undoubtedly 

affected the calculation of the AC1 pitch MOI, but was necessary for achieving any 

potential reading. The associated error can be rationalized by the assumption that the 

majority of aircraft mass is not in the wing section, and is rotating at a minimal distance 

from the center of gravity, thus creating a minimal moment that has a nominal effect on 

the entire aircraft pitch MOI.  

 

The rolling moment calculation was somewhat compromised by the aerodynamic 

dampening of the large wings arresting the oscillations prior to the completion of the 

XR250 calculation. Re-accomplishing the test failed to produce useable MOI data, but 

the period of oscillation for both wingspan configurations was recorded and calculated 
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using the yawing moment for comparative analysis. Figure 26 illustrates the testing 

process for the AC1 yaw and roll MOI calculations. 

 

 
Figure 26 Condor AC1 MOI Calculations 

 

3.3.3 Comparative Analysis 

 Utilizing data from Choon Seong and Jodeh’s small RPA modeling research, a 

comparative table of MOI data for similar scaled aircraft is shown below in Table 6 

(Choon Seong, 2008; Jodeh, 2006). The three NPS aircraft are all geometrically very 

different from the Condor, but serve as valuable datas point for the expected ratio of MOI 

data between different axes. Among the comparative aircraft, the AFIT SIG Rascal 110 is 

the closest aircraft geometrically. The results in Table 6 validate the accuracy in using the 

wingless configuration for the pitching moment calculations, as the 12-foot calculated Iyy 

MOI are very close to both the CLMax predictions as well as the SIG MOI values 

provided by Jodeh (2006).  
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Table 6: Collective Small RPA MOI Data 

 

3.4 Aircraft Model Development and Simulation 

Dynamic modal analysis of the Condor aircraft requires the development of a base 

aircraft model, of the format shown in Equations 5 and 6. Because of the separable nature 

of lateral-directional and longitudinal control of the aircraft, it is both logical and 

preferable to individualize the control schemes. The longitudinal stability control consists 

of the elevator and throttle control, and the lateral-directional control consists of control 

over the rudder and aileron inputs. 

 

3.4.1 Longitudinal Model. 

The vast majority of modeling effort was focused on tuning the longitudinal 

model and control scheme to allow for adequate climb, cruise, and loiter capabilities. 

This modeling effort was composed of the model development, the Simulink® model, and 

the PID gain tuning. 

 

Aircraft Roll - Ixx (slug*ft2) Pitch - Iyy (slug*ft2) Yaw -Izz (slug*ft2) 
CLMax 12 foot Condor 8.0778 1.124 9.091 

12 foot Condor 3.884 1.572 4.569 
15 Foot Condor 6.322 1.572 7.329 

NPS Frog 12.538 8.408 18.585 
NPS Bluebird 12.6113 13.201 19.986 
NPS PB10B 33.1878 19.175 44.988 

AFIT SIG Rascal 110 1.9 1.55 1.7 
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Model Development. 

 Incorporating the basic model shown in Equation 5, with the adaptation of an 

altitude tracking state from the altitude deviation state used by Jacques, yields a full 

longitudinal control model of the Condor aircraft, shown below in Equation 11 and with 

the predictive values in Equation 12 (Jacques, 1995). The A and B matrices are populated 

with the calculated stability derivative values shown in Table 7, with further derivation 

and descriptions available in chapter 3 of the Nelson text (Nelson 2003). 
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Table 7: Longitudinal Stability Derivatives 

 
Parameter Value Unit 

CLα 6.051 per radian 

Cdo 0.0312 
 

Q 2.9775 lb/ft2 

Uo 50.8 ft/sec 

Ρ 0.002308 slug/ ft3 

S 12 Ft2 

M 0.931677 Slugs 

Clu 0.055862 
 

Clo 0.22 
 

Cmα -1.62 per radian 

   1 Ft 

Cmq -11.7426 
 

Cmu 0 
 

Cdα 0.271383 Per Radian 

Cdu 0 
 

Zu -1.26772 
 

Zw -4.56891 
 

Czδe -0.92989 Per Degree 

Cmδe -2.93565 Per Degree 

     -3.91416 Per Radian 

M   -0.01724 
 

XδT 0.25 
 

 

Open-loop analysis of this first model revealed that the aircraft exhibited unstable 

short period poles, and would thus be inherently unstable. This was caused by an error in 

the adaptation of Stryker’s 2010 AFIT OWL model, where the value of the aircraft 

pitching moment due to an increase in airspeed,         , was initially set to 0.15. 

Design differences between the AFIT OWL and the Condor, such as the pushing prop 

elevated above the center of gravity on the OWL, dictate that  the pitching response of 

the OWL to an increase in airspeed will be significantly greater than that of the Condor.  
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For this reason, the value was decreased to a more reasonable 0.0015, yielding the open-

loop pitch root locus found below in Figure 27. Of future interest from the open loop 

results are the nearly unstable Phugoid poles, located close to the imaginary axis. 

Although unstable Phugoid modes are not desirable, they are nearly always benign, and 

can be easily compensated for by pilots or feedback control systems (Stevens 2003).  

 

 
Figure 27: Condor Open Loop Longitudinal Root Locus 

 

Simulink Analysis.  

Due to the proprietary nature of many of the control loops within the Kestrel® 

autopilot, an independent Simulink® model of the autopilot had to be constructed in order 

to effectively model the aircraft with specified gains. The Christiansen 2004 Brigham 

Young University Master’s thesis “Design of an Autopilot for Small Unmanned Aerial 

Vehicles” serves as the foundation upon which the Kestrel® autopilot was built, and thus 

serves as a useable approximation of the current kestrel code (Christiansen, 2004). 

Christiansen utilized a longitudinal control flow block diagram shown in Figure 28.  
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Figure 28 Kestrel Longitudinal Control 
 

This model can be adapted easily utilizing the Matlab Simulink® toolbox. Because 

the focus of the modal analysis is the dynamic responses, utilizing the perturbation theory 

allows the elimination of many of the feed-forward values that Procerus Technologies has 

deemed proprietary and un-releasable in the Kestrel® code. Furthermore the addition of 

actuators and engine response models to the control model further increases its ability to 

accurately depict and predict aircraft controllability. By designing the actuators as inner 

feedback loops with independent rate and position saturations, the integrated error 

associated with the actuator is decreased, allowing for a more realistic actuator saturation. 

A fundamental aspect of the model that was initially overlooked during development was 

the perturbation-based nature of the linear model. This limitation was discovered as a 
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result of the group’s repeated inability to stabilize the aircraft model when the throttle 

loops were engaged. Because the model is only able to determine the next iteration of the 

aircraft flight path and dynamics, a designed throttle limit of 0 only allows the aircraft to 

maintain the current throttle setting, rather than decrease from its current state. The 

simple solution to this issue is to change the throttle setting limits from -25% to 75% 

throttle, allowing a full range of throttle control, yet adapting the model to overcome the 

software limitation.   The resulting Simulink® longitudinal control model is shown in 

Figure 29.  

 

Tuning the Proportional-Integral-Derivative (PID) control system in the model 

utilized a consecutive loop closure technique. The consecutive loop closure technique 

involves stabilizing the innermost loop to an impulse or step input, while leaving the 

remainder of the system open-loop. In order to quickly accomplish this, the manual 

switches shown in Figure 29 were used to open and close the loops as necessary. Upon 

determining a gain that will stabilize this first loop, in the longitudinal case the pitch rate, 

the next innermost loop is then closed and tuned, until all control gains have been tuned. 

With the inclusion of an integral gain on the middle loop, the expectation is that the 

aircraft will be able to track a specific pitch angle, and with the outermost loop, that it can 

track to a specific altitude. Due to the reliance of the outermost loops upon the inner 

loops, the consecutive loop closures technique is a very iterative process. Thus to 

accomplish the tuning with minimal iterations, a combination of root locus analysis and 

the Simulink® PID gain tuning analysis tool was used.  
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Figure 29: Condor Longitudinal Simulink® Model 
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Tuning of the innermost pitch rate loop resulted in the root locus shown in Figure 30. 

The proportional gain setting chosen allows for the short period poles to be ideally 

damped at roughly 0.707, with a predicted natural frequency of 8.21 radians/second (1.31 

hz). The Phugoid poles can also be seen close to the origin in Figure 30, but at a much 

lower frequency and with far less damping than the short period poles.  

 

 
Figure 30: Pitch Rate Closed Loop Root Locus 

 

 The effects of the emphasis on the short period dampening and response can be 

seen clearly in the pitch rate step response plot of Figure 31. Although initial reactions to 

the step plot infer that the poles are clearly under-damped, the period of oscillations in the 

step response shows that the oscillatory behavior is being caused by the nearly unstable 
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Phugoid, or long-period oscillations, which are easily controlled with the outermost 

longitudinal control loops.  

 

 
Figure 31: Pitch Rate Response to Elevator Step Input 

 

 Figure 32 shows the same step response plot in the first five seconds of response, 

where the short period response is shown to quickly respond and effectively dampen, 

while the Phugoid continues on in an under-damped harmonic motion. This response of 

the short period poles allows for sufficient confidence in the pitch-rate control to close 

the loop and move on to the pitch angle and altitude hold control loops. 
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Figure 32: Short Period Pitch Rate Response to Elevator Step Input 

 

Utilizing the Simulink® Control and Estimation Compensator Editor tool, the 

process of closing the two outer loops is significantly simplified. The Compensator 

Editor tool allows the user to simultaneously adjust the PID gains for both of the Pitch 

and Altitude hold controllers, while monitoring the desired output, in this case an altitude 

step of 100 feet. The compensator Editor can be seen in Figure 33, with the tuned step 

response following in Figure 34. After achieving a stable and correct steady state 

response to a 100 foot step command, the pitch proportional and integral gains were 

further adjusted to slow down the overall step response. The purpose of slowing the 

response is to ensure that the model provides enough of an error margin, since the model 

is not exact, the aircraft must remain stable for anticipated plant variations, even if this 

results in a slower response. Slowing the response too much can cause the autopilot to lag 

so far behind the aircraft that control actions will further propagate errors rather than 

correct them. Thus the objective of a 100 foot step in under 20 seconds, or a roughly 5ft/s 
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climb rate was established as a minimum climb rate. This objective was easily met, as 

shown in Figure 34. 

 

 
Figure 33: Simulink® Compensator Editor 

 

 

Figure 34: 100 Foot Altitude Command Step Response 
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3.4.2 Lateral/Directional Model 

Development of the Lateral/Directional model encompasses the same procedures 

and techniques as the longitudinal model. The fundamental difference between the two 

processes is the incorporation of the aerodynamic coupling between the roll and yaw 

modes. 

 

Model Development 

The Lateral/Directional model development consisted of the generation of the 

lateral/directional parameters found in Table 4, as well as the refinement of the Nelson 

lateral/directional mathematical model in Equation 6. The addition of ailerons in the 

control scheme required alterations to the Stryker Owl model, which utilized the Kestrel® 

rudder-only control scheme. A simple alternative model was found in the Nelson and 

Stevens texts, which incorporates both ailerons and rudder, as well as the modeling of the 

aerodynamic coupling between them (Nelson, 1998;Stevens 2003). The resulting 

lateral/directional stability parameters are shown below in Table 8, and are used in 

conjunction with several of the universal parameters in Table 7 to form the Nelson 

mathematical model, shown in Equation 13 (Nelson 1998). 
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Table 8: Lateral/Directional Stability Derivatives 
 

Parameter Value 

Cyβ -0.31 

Cyp 0 

Clp -0.415 

Cyr 0 

Clr 0.08 

Cyδa 0 

Cnδa -0.0258 

Clδa 0.15 

Cnβ 0.0529 

Clβ -0.1307 

Cnp -0.04 

Cnr -0.045 

Cyδr 0.075 

Cnδr -0.035 

Clδr 0.003 

 

 
 
 
 
   

   
   
    

 
 
 
  

                   
                    
                  

    

  

  
  
  
  

   

      
           
            

  

  
  
  

  (13) 

 

Open-loop analysis of the lateral-directional stability shows that the aircraft model 

has inherent lateral stablity. This is apparent in Figure 35, where the oscillatory Dutch-

roll mode poles and non-oscillatory spiral model pole are all located in the left-half plane. 

Of equal importance is the predicted damping ratio of the Dutch-roll root locus. Whereas 

the short period pitch poles were highly damped at roughly 0.8, the Dutch roll poles are 

shown with minimal natural dampening (ζ= 0.17) with infinite gain. Thus as the Jet5 

static stability analysis alluded to, the aircraft will require tuning to correct for 
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insufficient tail surface volume. This problem is further amplified by the addition of the 

15-foot wingtip extensions. 

 

 
Figure 35: Condor 12-foot Wingspan Lateral Root Locus 

 

Simulink® Analysis 

The current release of the Kestrel® autopilot code has the ability to stabilize and 

navigate multiple configurations of aircraft, including traditional, V-tail, and rudder-

only lateral control arrangements. The lateral-directional control loop structure for 

traditional aircraft configurations is considered proprietary by Procerus Technologies, 

and thus had to be independently developed. The basis for the model was found in 

Stevens’ Aircraft Control and Simulation (2003). Figure 36 below shows the Stevens 

combined lateral/directional model for a wing-leveling autopilot system. 
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Figure 36: Stevens Wing-Leveler Control system (Stevens 2003) 

 

Several modifications were required to further refine the Stevens model for 

practical use. The most important was the inclusion of actuator position and rate 

saturations. Saturations are generally detrimental to modeled stability, but essential for 

preserving the accuracy of the model for the real aircraft. Furthermore, the inclusion of 

manual switches allows for the independent analysis and tuning of the aileron controls 

and the rudder controls, without the coupled input effects of the non-monitored 

parameter, be it roll or yaw. Heading feedback control is not necessary as part of the 

model, as it is included as a feed-forward parameter, built into the internal Kestrel® 

code. The final Simulink® lateral/directional aircraft model used for the analysis of 

both the 12- and 15- foot Condor aircraft is shown below in Figure 37.  
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The consecutive loop closure technique was performed to tune the 

lateral/directional model in the same manner that it was used to tune the longitudinal 

model. The roll rate and yaw rate loop gains were determined based on the root locus 

of Figure 35, and then the Simulink® controller design tool was used to tune the roll 

position controller. An increased emphasis on allowing a sufficient gain margin was 

adopted when tuning the roll and yaw rate loops, due to potential excitations caused by 

the aerodynamic coupling between the two. This was in effect useless, as tuning results 

indicated that the aircraft would operate with more lateral stability without the use of a 

rudder than with a tuned feedback loop. This result is completely counter-intuitive, and 

multiple attempts to adapt the model to improve results were unsuccessful. Figure 38 

and Figure 39 show the roll response and sideslip angle response to a 15-degree roll 

command to the aircraft without rudder input. 

 

  
Figure 38: 15-Degree Roll Input Roll Response 
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Figure 39: 15 Degree Roll Input Sideslip Angle Response 

 

Although the output response above shows a significant sideslip of the aircraft 

following a commanded roll input, the steady-state response of both roll and yaw is 

stable, with a well damped roll response. Thus the tuned results above give enough 

confidence of stability in the lateral/directional modes using only roll feedback to 

satisfactorily assume a stable set of gains for initial flight testing.  
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3.5 Flight Test 

Flight testing of the Condor aircraft involved of a series of grouped objectives, 

spanning over a planned flight test program of 5 flights per aircraft. The term “flight” 

indicates a set of objectives planned for a single aircraft launch; however, a flight could 

require several launches to accomplish all objectives reserved for that “flight.” Several 

additional flights were made to meet secondary objectives after the initial stability and 

performance flights were complete. The flight test plans for all flight testing can be found 

in Appendix C. 

 

3.5.1 Planned Testing Process 

The five flight tests for each aircraft were designed to allow a conservative testing 

process, where the most important and least risk-prone objectives are accomplished prior 

to higher risk, lower importance objectives. This process is fully explained in English and 

Molesworth’s Concept Evaluation of a Remotely Piloted Aircraft Powered by a Hybrid-

Electric Propulsion System (English and Molesworth, 2012). The five planned flights for 

each aircraft were: 

1. Remote Control only – Aircraft basic flight maneuvers, no stability 
augmentation, flown at minimal flight weight 
 

2. Stability Augmentation – Tune rate control feedback loops for 
Stability Augmentation System (SAS)  

3. Directional Control – Tune altitude and heading controls to allow full 
autonomous flight 

4. Open Loop Testing – Disengage SAS, perform aircraft frequency 
response maneuvers to validate model 

5. Performance flight – Full autonomous flight to measure altitude 
tracking, fuel burn rates, and acoustic signatures 



61 

 
3.5.2 AC1 Process Changes 

Miscommunication with the contracted operators of the AC1 testing process 

induced several major adjustments in the proposed flight plan. The result of these 

miscommunications was AC1 being flown on flight #1 with faulty stability control 

enabled, stability parameters from the SIG Rascal aircraft, and an additional gain of 100 

added to all servo outputs. Flight 1 telemetry shows this 35-second flight reached 

attitudes that exceeded 120 degrees of roll, 85 degrees of pitch, 35 degrees of yaw, and 

resulted in a crash landing that broke the empennage free of the fuselage at the hinge 

pins. Following the repair of the empennage pins and a re-briefing of the contractors, the 

flight schedule resumed its intended progression. The major deviation from the original 

plan is that AC1 was flown with the SIG Rascal gain settings, with the additional gain of 

100 removed, until a stable autonomous mode was accomplished. Figure 40 below shows 

the repaired AC1 airframe on landing approach.  

 

 
Figure 40: AC1 In-Flight Photograph 
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3.5.3 AC2 Process Changes 

The intended process for flight testing of AC2 was far more focused on the 

limitations and performance of the HE system. The basic airframe was at that time 

considered stable through the AC1 flight test process, provided that AC2 could develop 

equivalent thrust to AC1. The limited data available from the flight testing of AC2 

suggests that this was not the case, as AC2 was unable to successfully launch. 

3.6 Data Reduction and Model Refinement 

The stream of telemetry data at 20 data points per second produced a complete 

data set for Airframe and model analysis. The major aspects that were investigated and 

compared relative to the predictive model were the short and long period longitudinal 

oscillations, flight operating airspeeds, and the overall stability of the lateral/directional 

aircraft modes in flight. This information was determined from the airspeed, altitude and 

heading data, as well as the pitch, roll, and yaw rates found in the Kestrel telemetry 

stream.  

 

3.6.1 Longitudinal Modal Analysis  

The process of evaluating the longitudinal modes consists of forcing the aircraft to 

oscillate at or near the predicted natural frequency, and monitoring the resulting 

frequency of response. The methods of exciting the oscillatory modes are found in 

Appendix A.  
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Phugoid Analysis 

From the predictive model discussed in Section 3.4.1, the expected natural 

frequency of the Phugoid, or long period oscillations of the aircraft, are expected to occur 

at roughly 0.428 radian/second, or roughly 14.68 seconds per oscillatory cycle. Graphical 

analysis of Figure 41 below shows definitive peaks of an excited Phugoid mode 

following the initial excitation by a steady pull-up and release of the controls. 

Determination of the damped natural frequency from this data is found by calculating an 

average time between the first two major peaks of the oscillatory response. The Phugoid 

mode was excited effectively three times in succession, with an average natural 

frequency output of 14.6 cycles per second. This is a 0.55% difference from the 

predictive Phugoid frequency.   

 

 
Figure 41: Condor Phugoid Response 
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Short Period Analysis 

Excitation of the Short Period oscillatory mode is accomplished by  a series of 

elevator “doublets” or continued forced oscillations of the elevator at the predicted 

frequency of approximately 7 radians/second, or 1.1 cycles of the elevator per second. 

The forcing of the aircraft can be seen in Figure 42 as the sharp repeated peaks from 235 

to 255 seconds. The subsequent rounded peaks of the Short Period response are measured 

in the same manner as the Phugoid analysis, and averaged 3.5 seconds per cycle or 1.8 

radians per second. This yields roughly a 75% error from the predictive values. Analysis 

of the forcing frequency shows that the pilot was able to correctly force the aircraft at the 

predictive frequency, yet the aircraft did not respond in the predicted manner.  

 

The short period analysis test was completed a total of six times, with inconsistent 

results. Attempts to deduce the natural frequency by means of Fourier analysis of the 

flight were likewise inconclusive. Further testing was deemed unnecessary, as the test 

results were deemed valid, though the cause for inconsistent results remains unknown.  
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Figure 42: Condor Short Period Response 

 

3.6.2 Operating Airspeed Analysis  

Flight testing for the predicted airspeed values shown in Table 5 was 

accomplished in accordance with the flight test plan found in Appendix A. All airspeed 

values for AC1 were determined at an operating weight of 28 lbs, which is slightly lighter 

than the modeled weight, but not significant enough to cause drastic deviations. Further 

increases in vehicle weight, as is necessary for the test flights of AC2, will cause the 

resulting airspeed values to likewise increase proportionately. Aircraft stall speed was 

averaged over a series of seven tests, consisting of a idle throttle setting and slight up-

elevator until the aircraft experienced buffeting and broke into the stall. This can be seen 

in Figure 43 below.  
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Figure 43: Condor Stall Test Airspeed Data 

 

 Takeoff airspeed was measured from the moment the Kestrel® autopilot 

recognized the aircraft in a flying state, and is an average of the individual airspeed 

reading for all aircraft takeoffs, including the variation of weight from 28 to 36 lbs. 

Takeoff airspeed varied from 24 to 29 mph, with an average increase in airspeed of 0.5 

mph per lb of weight added. Wind conditions heavily affected the ability of the aircraft to 

effectively navigate at the predictive loiter airspeeds. The asserted “best” loiter airspeed 

corresponds to the minimum airspeed in which the aircraft could effectively loiter in a 

10-15 mph wind environment, as demonstrated in flight test. All tested airspeed data 

results are shown in Table 9, with the most efficient cruise and loiter airspeeds not 

attainable from the data collected. 

  

 

 



67 

 

Table 9: Condor AC1 Airspeeds 
 

 

 

3.6.3 Lateral Stability Evaluation 

The lateral/directional stability was not investigated as thoroughly as the 

longitudinal, because it was not considered to be a stressing factor for the operational 

concept evaluation. The spiral mode was evaluated as described in Appendix A, and no 

tendencies for instability were found. Evaluation of the Dutch-roll mode found the 

aircraft to be particularly susceptible to the Dutch-roll mode, as was predicted by both the 

static and dynamic mathematical models.  The frequency of the Dutch-roll mode was 

significantly slower than predicted, but was forced at a lower frequency than intended. 

Data from Figure 44 below shows the forcing and response frequency of 2.44 radians per 

second. The predicted natural frequency was 6.34 radians per second. 

 

 
Figure 44: Condor Dutch-Roll Results 

 

Description Airspeed 
Stall Airspeed 21.6 Mph (31.7 ft/s) 

Takeoff Airspeed 26.3 Mph (40.1 ft/s) 
Best Loiter 47.5 Mph (69.7 ft/s)  
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3.6.4 In-Flight Gain Tuning 

The additional emphasis on aircraft test survivability following the crash on Flight 

#1 dictated the usage of the SIG Rascal PID gains developed by Nidal Jodeh, as they had 

been proven effective on a similarly-sized aircraft (Jodeh, 2006). In-flight aircraft 

telemetry provided streaming data, which enabled the ground crew to vary the PID gains 

on all aircraft settings to improve aircraft stability and handling. In flight adjustments to 

the SIG Rascal gains continuously approached those predicted in the Condor 

mathematical model throughout Flight #3, and were eventually changed out completely 

to the predictive gains for all subsequent flights, with significantly improved 

performance.  

3.7 Aircraft Performance 

Two major aspects of the aircraft proof of concept were additionally studied 

outside of the initial stability and control analysis on the Condor flight tests. The 

additional objectives were introduced after noting the very low fuel burn rates of the 

Honda 35cc engine. Due to the increased energy density of gasoline, it was suggested that 

efforts be made to reduce the acoustic signature of the aircraft, and additional fuel be 

added, in order to achieve long-loiter, near-silent operation without the use of a hybrid 

system. As a result, propellers with varying blade counts were investigated as an 

acoustic-reduction measure for the aircraft, as was accomplished on the Lockheed YO-

3A “Quiet Star” in Vietnam (Army-Lockheed, 2004). As a general rule, for every 

additional blade added to an R/C propeller, the operator should decrease the span of the 

blade by an inch, and increase the pitch by an inch. Due to the limited range of pitch and 
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span of multi-blade R/C scale propellers in the commercial marketplace, compromises 

were made regarding the proportional scaling of propellers. Results of the performance 

and acoustic tests are displayed and explained in Concept Evaluation of a Remotely 

Piloted Aircraft Powered by a Hybrid-Electric Propulsion System (English and 

Molesworth, 2012). 

 

3.8 Chapter Conclusion 

Development and refinement of the mathematical model for the Condor Aircraft 

was an iterative and multi-disciplinary endeavor. The development of the model, as can 

likewise be seen in the vast majority of the S-RPA research, is highly dependent upon the 

available resources necessary to determine the fundamental stability parameters. The lack 

of wind-tunnel testing and detailed modeling available for small RPA aircraft 

significantly increases the error induced into the model. This can, however, be 

compensated for by the juxtaposition of parameters between similar airframes, as was 

done on the small scale for unknown Condor values. 
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4 Results 

4.1 Chapter Overview 

The flight testing of the Condor aircraft validates the accuracy and validity of the 

static and dynamic models for use in Small Remote-Piloted Aircraft. Use of the Jet5 

software tool to predict basic flight stability parameters led to the development of a useful 

mathematical model, providing for simple in-air stability tuning with very favorable 

results.  

 

4.2 PID Tuning Results 

Section 3.6.4 details the process by which the SIG Rascal gains were sequentially 

adapted to provide for a stable flight performance of AC1. The fundamental SIG gains 

are shown below in Table 10. 

 
 Table 10: SIG Rascal PID Gains 

 
 

 

 

 

 

 

 
 

Parameter Description Gain 
  

  Pitch Rate Proportional Gain 0.2 
  

  Pitch Angle Proportional Gain 1.1 
  

  Pitch Angle Integral Gain .01 
  

  Altitude Proportional Gain 0.02 
  

  Altitude Integral Gain 0.002 
  

  Altitude Derivative Gain 0.005 
  

  Throttle Proportional Gain 2.0 
  

  Throttle Integral Gain 1.0 
  

  Throttle Derivative Gain 2.0 
  

  Roll Rate Proportional Gain 0.03 
  

  Roll Angle Proportional Gain 0.3 
  

  Roll Angle Integral Gain 0.001 
  

  Yaw Rate Proportional Gain 0.1 
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Throughout the process of flight testing, these gains were slowly adapted until 

they approached the predictive model gains. At this point, all fundamental longitudinal 

and lateral/directional gain values were changed to the predictive values shown below in 

Table 11. Further attempts to improve flight stability were insignificant in result, as the 

magnitude of in-flight fluctuations exceeded that of the control input responses.  

 

 Table 11: Condor AC1 Final PID Gains 
 

 

 

 

 

 

 

 
 

 

 

4.3 Simulated Model Performance 

Despite the rather minor changes made to the PID gain values, a significant 

improvement in aircraft dynamic performance was achieved by adaptation of the 

modeled gains. A comparative parameter was developed to analyze the flight test periods 

where the SIG Rascal gains were in complete control of the aircraft, and when the tuned 

gains were in control. The deviation between the commanded control surface deflection 

Parameter Description Gain 
Value 

  
  Pitch Rate Proportional Gain 0.0664 

  
  Pitch Angle Proportional Gain 0.490 

  
  Pitch Angle Integral Gain 0.0416 

  
  Altitude Proportional Gain 0.0140 

  
  Altitude Integral Gain 0.004 

  
  Altitude Derivative Gain 0.007 

  
  Throttle Proportional Gain 10 

  
  Throttle Integral Gain 1 

  
  Throttle Derivative Gain 0.5 

  
  Roll Rate Proportional Gain 0.3349 

  
  Roll Angle Proportional Gain 0.4123 

  
  Roll Angle Integral Gain 0.02 

  
  Yaw Rate Proportional Gain 0.15 
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and actual control surface deflection was calculated at each autonomous data point, and 

labeled the “model error.” This is demonstrated below in Figure 45.  

 

 
Figure 45: Model Error Analysis 

 
 

Averaging the position model error for the two different sets of gains showed a 

significant improvement in roll and altitude errors when the predictive gains were 

entered. Table 12 lists the calculated average errors over several minutes of autonomous 

flight, as well as the percent reduction in error achieved by the tuned predictive gains.  

 
Table 12: PID Gain Model Error Comparison 

 

The significance of this error reduction is far more apparent in flight as it resulted 

in a reduction of the time delay between the commanded input and the actual aircraft 

response. A human pilot is expected to have a typical response time, from sensory to 

 Roll Error (Deg) Pitch Error (Deg) Altitude Error (Ft) 
SIG Rascal Gains 3.106 0.820 7.251 
Tuned AC1 Gains 1.734 0.782 5.678 
% Improvement 44.08 % 4.64 % 21.69%  
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response, of roughly 0.25 seconds (Stevens, 2003). This response time, however, is for a 

manned aircraft pilot, which is far faster than the average response time of a remote pilot. 

The average time delay between the commanded response and the actual response in 

Figure 45 far supersedes the human standard, at 0.16 seconds. The combination of the 

improved control response and fast response time allowed the tuned Condor aircraft to fly 

in a far more stable manner than while under pilot control, or with the SIG rascal gains. 

 

4.4 Open-Loop Characterization and Model Adaptation 

The differences previously noted in the offset of the short period response were 

investigated extensively. Initial hypotheses pointed to miscalculations in either the 

aircraft pitching Moment of Inertia, or pitching moment coefficients. Specifically, the 

coefficients CMα and CMq, the moments due to angle of attack change and pitch rate. The 

aircraft pitching Moment of Inertia was investigated first, particularly due to the inability 

to measure the aircraft MOI with the main wing attached. Despite this deficiency, scaling 

of the aircraft weight and performance to the other aircraft in Table 6 suggests that the 

MOI data taken for the aircraft model was in fact accurate, and that the miscalculation 

must have occurred in the aerodynamic calculations. 

 

The variable CMα describes the change in moment that occurs with a 

corresponding change in aircraft angle of attack. This parameter is generally dependent 

upon the airfoil shape and position, but is also characterized by the time rate of change of 

the moment,     . The derivative value, however, varies proportionately with the value of 
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CMq, which is the second suspect parameter chosen for error analysis. CMq is based highly 

upon the tail lifting surface efficiency and moment arm. The vast majority of parameters 

that go into calculation of CMq are based on the defined geometric distances and wing 

areas of the aircraft, leaving only the tail efficiency factor, which was previously set to 

0.809, as suggested in Nelson (1998). Further analysis using the combined Jet5-Nelson 

model was unable to achieve the natural frequency demonstrated in the flight test.  

 

The final possibility for the inability to model the aircraft short period modes is 

the notion that the Condor wings and tail section are further increasing the dampening of 

the natural pitching modes. Excessive dampening caused by the large wingspan could 

potentially account for the inability to effectively excite the short period mode. This 

infers that the frequencies calculated from the flight test data were secondary or tertiary 

harmonics of the true short period frequency, or the short-period frequency was damped 

with a ζsp value of nearly 0.98. These two conclusions are likewise based on the 

assumption that the test pilot was successful in excitation of the actual aircraft short-

period mode.  

4.4.1 Throttle Changes between AC1 and AC2 

Throttle PID tuning and analysis for AC2 was unavailable, as AC2 was lost on the 

second takeoff attempt. After roughly 150 feet of takeoff roll, the right main wheel of the 

aircraft detached, causing the aircraft to skid down an embankment at Camp Atterbury, 

eventually careening into the grass. The damage sustained by the aircraft was extensive 

enough to eliminate the possibility of further flight testing without extensive repairs to 

the fuselage and wing collar. Perceived differences in the takeoff roll comparison of AC1 
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and AC2 point to a lack of available thrust on the AC2 takeoff attempts. This was 

apparent in the differences in both the audible propeller noise, as well as the distance 

required for takeoff between the two aircraft.   

4.5 Chapter Conclusion 

Flight test results from the AC1 and AC2 tests demonstrate that a high level of 

accuracy was achieved in the modeling process for the aircraft. The Jet5 and static 

parameterization was able to predict the Phugoid mode to within 1% of the actual value. 

Likewise the PID tuning process used with the developed Simulink® model was able to 

effectively reduce the system time delay and increase autopilot response by up to 45% 

without the need for additional in-flight tuning.  
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5 Conclusions and Recommendations 

5.1 Chapter Overview 

The overall results of the Condor modeling and tuning process indicate a very 

successful integration of previous S-RPA modeling methods with the Jet5 Software tool. 

Without further tuning or adaptation, the Condor airframe is capable of flying with the 

determined gains in a stable and efficient manner for periods of up to two hours. This 

time period could be easily extended to up to seven hours with the inclusion of additional 

fuel tanks and batteries (English and Molesworth, 2012). The modeling process was able 

to bring forth several important characteristics of the aircraft-model combination that 

demand further investigation.  

 

5.2 Evaluation of Methodology 

Adoption of the Jacques/Stryker dynamic aircraft model provided a very efficient 

template to start the dynamic analysis predictions. Further integration and comparison 

with the Nelson model and previous S-SPA parameterization allowed for coarse 

verification of the aircraft parameters. The overall result of this multi-faceted approach 

was success in the mathematical modeling of the Condor. Indication of this success were 

found in the marked improvement in flight performance and an inability to further 

improve PID gains in-flight to achieve better results.  
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 The one major shortcoming of the process was the inability to predict the short-

period response. This problem was likewise exhibited in the Stryker analysis of the AFIT 

OWL longitudinal model, where there was noted a significant inability to effectively 

model the short period mode or track to determined altitudes or pitch settings.  The 

additional fuselage length and higher pitching MOI were most likely beneficial to the 

Condor in allowing for a more efficient natural dampening of the airframe, allowing the 

aircraft to not exhibit the multiple longitudinal complications experienced in the Stryker 

analysis. The inclusion of and comparison to the Jodeh, Nelson, NPS and Stevens aircraft 

stability derivatives potentially further diluted any inherited errors (Jodeh, 2006; Nelson, 

2003; Choon Seong 2008; Stevens, 2003) 

 

The inability to effectively predict the rudder interconnect to the aileron control 

was overcome by small in-flight tuning procedures. The modeling approach, however, 

was ineffective in predicting the rudder control, as the final PID gain utilized in-flight is 

shown as a destabilizing value in the model. This performance disconnect is more than 

likely an error in the model, but corrected, and not observable in the proprietary feed-

forward parameters in the Kestrel® autopilot code.  

 

Modifying the model to incorporate the full HE system involved very few 

necessary changes to the PID gains or aircraft model. The foresight of the systems 

engineering approach to fly AC1 at the predicted weight and balance of AC2 eliminated 

necessary model changes due to weight or loading changes. The only parameter that 

required investigation was throttle command PID gains, due to scaling differences 
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between the two aircraft propulsion systems. The predicted changes were minimal due to 

the lack of fidelity in the Kestrel® input command for throttle, and masking nature of the 

Kestrel® code, but were unable to be accurate investigated with the loss of AC2.  

  

5.3 Significance of Research 

The modeling and tuning process of the Condor aircraft is significant due to the 

amalgamation of modeling programs and previous research utilized. Utilizing the 

manufacturer-provided data in conjunction with Jet5, Digital DATCOM and previous S-

RPA data allowed for the dilution of errors found in a single method. This process also 

enabled a further refinement of modeling parameters based on scaling when wind tunnel 

testing and aeronautical testing are feasible or available. 

  

5.4 Recommendations for Future Research 

The Condor research developed several key areas with problems requiring future 

research and analysis. Continued development in the following areas would allow for a 

further increase in the utility for Condor aircraft, as well as the field of S-RPA modeling 

as a whole.  

 

In order to investigate potential errors in short-period eigenvalue prediction a 

comparative evaluation of the mathematical models used in the AFIT Condor, OWL and 

BATCAM models should be performed. The lineage of AFIT aircraft mis-predicting and 

failing to effectively model the short-period modes can be traced back to the start of use 
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of the Kestrel autopilot, and the derivation of the Jacques A-4 model for use with AFIT 

S-RPA and MAVs. An evaluation of the techniques used to scale the Jacques model 

would be incredibly beneficial in determining the source of the longitudinal errors. 

 

The inexplicable high dampening of the Condor short-period oscillations 

indicated either model flaws or non-linear effects. The primary candidate for further 

analysis of non-linear dampening effects is the flexing of the wings. The single aluminum 

spar and foam core wing sections allowed for nearly 10 degrees of dihedral when the 

aircraft was loaded to the AC2 flying weight. Further investigation of this potential 

phenomenon could very well explain the discontinuities between model and flight results.  

 

The Kestrel Autopilot is a user-friendly system for flying S-RPAs in military and 

other environments that require secure communications. That being said, the proprietary 

nature of the Kestrel® code and significant cost of the system make it less than ideal for 

use in academic applications, where the free analysis of data and adaptation is critical for 

continued progress. The inability to access the feed-forward parameters, access the actual 

Kestrel® control diagram, or change the processes involved in the PID control 

significantly inhibit the user and developer’s ability to openly and honestly evaluate an 

airframe. The most significant problem is the considerable masking of erroneous user 

inputs. Switching to an open-source autopilot, such as an Ardupilot or OpenPilot system, 

would not only eliminate the coding limitations of proprietary software, but allow for true 

aircraft responses, at less than one-tenth of the cost of the Kestrel®. 
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5.5 Summary 

The work detailed in this thesis demonstrates the iterative process of fusing 

multiple sources at each step of the modeling process. The continuous juxtaposition of 

aircraft parameters and stability values with multiple sources throughout the process 

proved to be an effective practice for successful determination of a mathematical model 

that emulates actual aircraft performance. The successful modeling of the Condor 

allowed for significant development in S-RPA longevity and acoustic data for mission-

type analysis, as well as an aircraft characterization process that can expedite the 

modeling and tuning for future parallel HE-RPA projects.  



81 

Appendix A Kestrel Telemetry Parser  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% MatlabTelemParser.m 
% Version: 1.0.1  
% Author: Neil Johnson, Procerus Technologies 
%  
% Description: This file can be used with Matlab or Octave to  
% parse standard telemtry files saved by the Virtual Cockpit.   
%  
% Instructions: Load the telemetry file into Matlab and then run  
% this script.  A list of variables will be printed out to the  
% terminal.  You can then plot any of the variables using the  
% 'time' variable as follows: 
%  
% plot(time, varname1, 'b', time, varname2, 'r') 
%  
% You can also modify and copy the contents of this file into the top 

of  
% any file created to parse Virtual Cockpit telemetry. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%Updated 9/27/2011 
% 1)Velocities Converted to Miles Per Hour From M/s 
% 2)Distances and Altitudes Converted to Feed from Meters 
% 3)Angles and Angular Rates Converted to Deg and Deg/s From Rad and 

Rad/s 
% 4)Time Variable Parsed from reletive start time. 

  
AlreadyLoaded = exist('telemetry', 'var'); 

  
if AlreadyLoaded == 0 
        [File, FilePath, FilterIndex] = uigetfile(); 
        TelemetryIn = [FilePath,File] 
        run(TelemetryIn) 
elseif AlreadyLoaded == 1 
    reply = upper(input('There is already Telemetry in the Workspace. 

\n Do you want to use this data? Y/N, or <esc> to cancel: [N] ', 's')); 
    if isempty(reply) 
        reply = 'N'; 
    end 
    if reply == 'N' 
        clear telemetry; 
        [File, FilePath, FilterIndex] = uigetfile(); 
        TelemetryIn = [FilePath,File]; 
        run(TelemetryIn) 
    end 
end 
    nheader_string = regexprep(telemetry.heading,'\W',''); %Begin 

original Procerus code. 
    fprintf(1, 'New Variable Names:\n'); 
    j = 0; 
for i=1:length(nheader_string); 
    fprintf(1, '%s\n', nheader_string{i}); 
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    % Parse the UTC times correctly 
    if strfind(nheader_string{i}, 'UTCTime') > 0, 
        % Parse the STD TElEM UTC Time 
        s = [nheader_string{i} ' = telemetry.data(:, ' num2str(i+j) ':' 

num2str(i+j+5) ');']; 
        j = j+6; 
    else 
        s = [nheader_string{i} ' = telemetry.data(:,' num2str(i+j) 

');']; 
    end 

     
    eval(s); 
end 
%Converting Speeds to MPH 
Airspeed=Airspeed*2.23693; 
DesAirspd=DesAirspd*2.23693; 
GPSVelocity=GPSVelocity*2.23693; 
WindSpd=WindSpd*2.23693; 
%Converting Altitudes and Distances to Feed 
Altitude=Altitude*3.2808; 
DesAlt=DesAlt*3.2808; 
DistancetoTarget=DistancetoTarget*3.2808; 
GPSAlt=GPSAlt*3.2808; 
%Converting Radians to Degrees 
rd=57.3 
Pitch=Pitch*rd; 
PitchRate=PitchRate*rd; 
YawRate=YawRate*rd; 
Roll=Roll*rd; 
RollRate=RollRate*rd; 
ServoAileron=ServoAileron*rd; 
ServoRud=ServoRud*rd; 
ServoElev=ServoElev*rd; 
TurnRate=TurnRate*rd; 
DesRoll=DesRoll*rd; 
DesPitch=DesPitch*rd; 
DesHdg=DesHdg*rd; 
Heading=Heading*rd; 

  

  
for n=1:length(RelativeTimems) 
    time(n)=(RelativeTimems(n)-RelativeTimems(1))*0.001; 
end 
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Appendix B ERAU 3-d DATCOM Viewer Matlab Code 

%**ERAU 3-D Viewer*********************************************** 
% The source code contained herein was developed for Embry-Riddle  
% Aeronautical University by Glenn P. Greiner, Professor and Jafar  
% Mohammed, Student Assistant of the Aerospace Engineering Department,  
% Daytona Beach Campus. Copyright 2008. All rights reserved. 

  
% Although due care has been taken to present accurate programs this  
% software is provided "as is" WITHOUT WARRANTY OF ANY KIND, EITHER  
% EXPRESSED OR IMPLIED, AND EXPLICITLY EXCLUDING ANY IMPLIED WARRANTIES  
% OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. The entire risk 

as  
% to the quality and performance of the software is with the user. The  
% program is made available only for education and personal research. 

It  
% may not be sold to other parties. If you copy some or all of the  
% software you are requested to return a copy of any source additions 

that 
% you believe make a significant improvement in its range of 

application. 
%**********************************************************************

*** 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 
% datcom3d v1.2 Input File                                             

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 

  
clear 
clc 
clf 

  
%%% VISUALIZATION and RESOLUTION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
wframe = 1;       %0 = Shaded model 
                  %1 = Wireframe model (default) 

                 
fusres = 20;      %Fuselage resolution 
wgres  = 20;      %Wing,HT,VT resolution 

  
%%% (DO NOT CHANGE VALUES IN THIS BOX) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
XW=0;ZW=0;ALIW=0;XH=0;ZH=0;ALIH=0;XV=0;ZV=0;YV=0;numVT=1;VERTUP=1;    

%% 
NX=0;X=zeros(20);S=zeros(20);R=zeros(20);ZU=zeros(20);ZL=zeros(20);   

%% 
CHRDR_WG=0;CHRDBP_WG=0;CHRDTP_WG=0;SSPN_WG=0;SSPNOP_WG=0;SAVSI_WG=0;  

%% 
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SAVSO_WG=0;CHSTAT_WG=0;DHDADI_WG=0;DHDADO_WG=0;TC_WG=.12;             

%% 
CHRDR_HT=0;CHRDBP_HT=0;CHRDTP_HT=0;SSPN_HT=0;SSPNOP_HT=0;SAVSI_HT=0;  

%% 
SAVSO_HT=0;CHSTAT_HT=0;DHDADI_HT=0;DHDADO_HT=0;TC_HT=.12;             

%% 
CHRDR_VT=0;CHRDBP_VT=0;CHRDTP_VT=0;SSPN_VT=0;SSPNOP_VT=0;SAVSI_VT=0;  

%% 
SAVSO_VT=0;CHSTAT_VT=0;TC_VT=.12;                                     

%% 
SPANFI_F=0;SPANFO_F=0;CHRDFI_F=0;CHRDFO_F=0;DELTA_F=0;                

%% 
SPANFI_A=0;SPANFO_A=0;CHRDFI_A=0;CHRDFO_A=0;DELTAL_A=0;DELTAR_A=0;    

%% 
SPANFI_E=0;SPANFO_E=0;CHRDFI_E=0;CHRDFO_E=0;DELTA_E=0;                

%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 

  
%%% INPUT PARAMETERS BELOW 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% SYNTHS parameters 

  
% BODY parameters 

  
% WING parameters (add suffix "_WG" to variables) 

  
% WING FLAPS (add suffix "_F" to variables) 

  
% WING AILERONS (add suffix "_A" to variables) 

  
% HORIZONTAL TAIL parameters (add suffix "_HT" to variables) 

  
% ELEVATOR (add suffix "_E" to variables) 

  
% VERTICAL TAIL parameters (add suffix "_VT" to variables) 
% For twin vertical tails, you need to define: 
%   numVT - number of vertical tails (for twin VT, should be 2) 
%      YV - distance from FRL to stb. VT vertex 

  

  
%%% PLOTTING 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
warning off MATLAB:divideByZero 
hold on 

  
plotFuselage(NX,X,S,R,ZU,ZL,fusres) 
plotWing(XW,ZW,ALIW,CHRDR_WG,CHRDBP_WG,CHRDTP_WG,SSPN_WG,SSPNOP_WG,SAVS

I_WG,SAVSO_WG,CHSTAT_WG,DHDADI_WG,DHDADO_WG,... 
         

SPANFI_F,SPANFO_F,CHRDFI_F,CHRDFO_F,DELTA_F,SPANFI_A,SPANFO_A,CHRDFI_A,

CHRDFO_A,DELTAL_A,DELTAR_A,TC_WG,wgres) 
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plotHT(XH,ZH,ALIH,CHRDR_HT,CHRDBP_HT,CHRDTP_HT,SSPN_HT,SSPNOP_HT,SAVSI_

HT,SAVSO_HT,CHSTAT_HT,DHDADI_HT,DHDADO_HT,... 
       SPANFI_E,SPANFO_E,CHRDFI_E,CHRDFO_E,DELTA_E,TC_HT,wgres) 
   

plotVT(XV,YV,ZV,CHRDR_VT,CHRDBP_VT,CHRDTP_VT,SSPN_VT,SSPNOP_VT,SAVSI_VT

,SAVSO_VT,CHSTAT_VT,VERTUP,TC_VT,wgres) 
if numVT > 1 
    plotVT(XV,-

YV,ZV,CHRDR_VT,CHRDBP_VT,CHRDTP_VT,SSPN_VT,SSPNOP_VT,SAVSI_VT,SAVSO_VT,

CHSTAT_VT,VERTUP,TC_VT,wgres) 
end 

  
%%% VIEWPORT/FIGURE PROPERTIES 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if wframe == 0 
    %colormap([1 .7 .1])      %Set a/c to gold 
    colormap([0 0 1])         %Set a/c to blue 
    shading interp            %Interpolated shading 
    lighting gouraud          %Smooth airplane mesh 
    %camlight right           %Apply a light source   

     
    %Custom Lighting Options, Note:[X Y Z] 
    light('Position',[1 -2 1],'Style','infinite'); 
    light('Position',[1 2 1],'Style','infinite'); 
    light('Position',[0 0 -6],'Style','infinite'); 
else 
    colormap([1 1 1])         %Set a/c to white 
end     

  
axis off                      %Turn off axis 
axis equal                    %Correct aspect ratio 
%camva(4.5)                   %Zoom in a/c to fit figure 
view(3)                       %Apply initial viewport rotation 
%camproj('perspective')       %Perspective viewing (not R2006a 

compatible) 
rotate3d  on                  %Rotate icon enabled at start up 

  
%showplottool('plotbrowser')   %Enable the plot browser on startup 
set(gcf,'NumberTitle','off','Name','Aircraft Plot','Color',[1 1 1]); 
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Appendix C Condor Flight Test Cards 

 
FT-01:  CONDOR Manual Flight Handling Qualities Test Card 
 

Preconditions:  

Autopilot installation and ground configuration procedures accomplished as described in Section 1 through Section 2.1 of the 

Procerus Installation and Configuration Guide Document Version 2.0, dated 10/27/08.  CONDOR pre-flight procedures complete. 

 

Configuration:  

Base airframe, ½ tank fuel, ~20-lb, R/C only mode 

 

Note:  Mission requires a safety pilot (SP), and operator (O).  The entire flight will be conducted in RC Mode  

Objective:  

1. Determine aircraft performance under manual RC mode 
 

FT-01:  PROCEDURES Notes: Dur: 30 min 
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FT-01:  PROCEDURES Notes: Dur: 30 min 

Basic Response 

1. SP:  Switch to RC Mode 
2. O:  Verify RC Mode (control boxes grayed out)  and in “Manual Mode” 
3. O:  Perform Launch Checklist  
4. SP:  Trim the CONDOR for level flight at 700 ft 
5. O:  Verify the GPS maintains lock                                 
6. O:  Verify the airspeed and altitude values in the artificial horizon are 

reasonable values 
7. O:  Verify the roll, pitch, and heading angles shown in the artificial 

horizon are reasonable.  (may need to instruct SP to bank and change 
heading) 

8. SP: Vary throttle response from trim to 100% 
9. SP: Perform left and right rolls, vary from ~10 deg to 60 deg,, vary 

throttle as needed 
10. SP: Perform yaw maneuvers, vary from 5 deg to 20 deg, vary throttle as 

needed 
11. SP: Perform pitch maneuvers, vary from ± 5 deg to 30 deg, vary throttle 

as needed  
12. SP:  Perform coordinated flight maneuvers, note response, vary throttle as 

needed 
13. SP:  Recover CONDOR to trimmed level flight at 700 ft, Record SP 

 

 

 

 

 

 

 

 

 

Response:______________________ 
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FT-01:  PROCEDURES Notes: Dur: 30 min 

evaluation 
14. SP:  Repeat steps 4 – 12 for different altitudes (500, 800,  1000-ft)  

 

 

 

Evaluate Stall Characteristics 

 

15. O:   Verify the GPS maintains lock                                 
16. O:  Verify the airspeed and altitude values in the artificial horizon are 

reasonable values 
17. SP:  Begin steady Backstick pressure – do not use rudder or flaps 
18. SP:  Use sufficient aileron to maintain level flight 
19. O:   Note Buffet airspeed 
20. SP:  Continue Backstick until rear stops 
21. O:  Note departure speed and/or other characteristics  
22. SP: Recover CONDOR to trimmed level flight at 700 ft 

 

 

 

SP Evaluation:__________________ 

 

 

 

 

 

 

 

 



 

 

89 

FT-01:  PROCEDURES Notes: Dur: 30 min 

23. SP: Land aircraft 

 

FT-02:  CONDOR First Flight PID Tuning Test Card 
 

Preconditions:  

Autopilot installation and ground configuration procedures accomplished as described in Section 1 through Section 2.1 of the 

Procerus Installation and Configuration Guide Document Version 2.0, dated 10/27/08.  CONDOR pre-flight procedures complete. 

 

Configuration:  

Base airframe,  ½ tank fuel,  30-lb 

 

Note:  Mission requires a safety pilot (SP), and operator (O).  The entire flight will be conducted in RC Mode  

Objective:  

2. Trimming the aircraft and finding reasonable values for trim airspeed, trim throttle, and trim angle of attack. 
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FT-02:  PROCEDURES Notes: Dur: 10 min 

24. O:  Disable rate damping PID Loops, navigate to the F5 Settings page > 
Autopilot Config > Mode Configuration > RC Mode > PID Loops 
(Level I Loops). Uncheck all rate boxes 

25. SP:  Switch to RC Mode 
26. O:  Verify RC Mode (control boxes grayed out)  and in “Manual Mode” 
27. O:  Perform Launch Checklist  
28. SP:  Trim the CONDOR for level flight 
29. O:  Verify the GPS maintains lock                                 
30. O:  Verify the airspeed and altitude values in the artificial horizon are 

reasonable values 
31. O:  Verify the roll, pitch, and heading angles shown in the artificial 

horizon are reasonable.  (may need to instruct SP to bank and change 
heading) 

32.  SP: Fly an obit (less than 30 degrees of bank) at constant altitude and 
airspeed 

33. O: Navigate to the Calibration screen in Virtual Cockpit F5 Settings page 
> Calibration 

34. O: Click “Request” in the airspeed calibration window.  Note the Bias 
error  
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FT-02:  PROCEDURES Notes: Dur: 10 min 

 

35. O:  Click “start calibration” 
36. O:  Click “stop calibration” 
37. O:  Note the correction factor 

 

 

 

 

 

38. O:  Click Accept (autopilot will use the new correction factor). 
39. SP:  Continues to fly orbit 

40. O:  Periodically click request and note the new bias error 

 

 

 

Bias Error: ________.   
This value is a wind corrected airspeed bias in m/s. If this value 
is above 1, you should calibrate the airspeed. 
 

 

 

 

Correction Factor: ___________ 

This is the amount the autopilot scales the differential pressure 
before converting to airspeed. If this value is 1, there is very 
little cabin pressurization or other effect that cause airspeed bias 
errors. If this value is significant (less than .75 or greater than 2) 
then there are some cabin pressurization issues.  
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FT-02:  PROCEDURES Notes: Dur: 10 min 

 

 

 

 

41. SP:  Fly aircraft level at constant altitude and airspeed 
42. O:  Go to the PID screen in Virtual Cockpit F5 Settings page > PID 

Values and note the average airspeed, average pitch angle 

 

 

43. O:  Go to the servos screen in Virtual Cockpit F5 Settings page > Servos 
44. O:  In the Servo Travel window click the “Send/Req”  a few times and 

note the average throttle position in %  

 

 

45. SP:  Land the aircraft manually. Keep the airplane powered on.  

 

Bias Error 1 _______ 

Bias Error 2 _______ 

Bias Error 3________ 

Bias error should drop to below one.   
If after several orbits the bias error is still above one, repeat the 
calibration procedure beginning at step 12. 
 

 

 

Average Airspeed _________ (Use as Trim 

Airspeed and Cruise Airspeed) 

Average Pitch Angle ________ (Use as Trim Angle 

of Attack) 
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FT-02:  PROCEDURES Notes: Dur: 10 min 

46. O:   Navigate to the Autopilot Config screen (under Feed Forward and 
Trims)  and enter the Trim Airspeed, Trim Throttle, and Trim Angle of 
Attack [the trim angle of attack needs to be converted to radians (degree 
value / 57.3)]  

47. O:  Enter Cruise Airspeed (under Mode Configuration > Common) 

 

 

48. O:  Click “Upload Config” 
49. O:  Navigate to the servos screen and click “Upload Trims” 

50. O:  Click “Request Bias” 

 

51. SP:  Manually re-zero the trim tabs on the RC controller 

 

52. O:  Click “0 Sticks” 

53. O:  Click “Update Flash” 
54. O:  Turn off  CONDOR 

 

 

 

Average Throttle % ________ (Use as Trim 

Throttle) 

 

 

 

Trim and cruise airspeed should be the same value. After gain 
tuning, you may desire to adjust the cruise airspeed for different 
conditions. The trim airspeed should not be changed as this 
value is used for gain scaling and a change will require re-tuning 
the gains.  
Typically the trim angle is between 0 and .1 radians 
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FT-02:  PROCEDURES Notes: Dur: 10 min 

  
The values from the Commbox column are added to the biases 
because the trims are now stored on the autopilot.  

FT-03:  CONDOR Open-Loop Maneuvers Test Card 
 

Preconditions:  

Autopilot installation and ground configuration procedures accomplished as described in Section 1 through Section 2.1 of the 

Procerus Installation and Configuration Guide Document Version 2.0, dated 10/27/08.  CONDOR pre-flight procedures complete. 

 

Configuration: 

Base airframe, ½ tank fuel,  30-lb 

 

Note:  Mission requires a safety pilot (SP), and operator (O).  The entire flight will be conducted in RC Mode  

Objective:  

3. Determine response to manual inputs in order to validate open-loop model 
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FT-03:  PROCEDURES Notes: Dur: 30 min 

Pitch Response 

55. O:  Navigate to Settings > Data Logs, select desired Pitch parameters for 
recording. Ensure data logger in Virtual Cockpit  is properly configured 
for  data acquisition 

56. SP:  Switch to RC Mode 
57. O:  Verify RC Mode (control boxes grayed out)  and in “Manual Mode” 
58. O:  Perform Launch Checklist  
59. SP: Trim the CONDOR for level flight at 700 ft 
60. O:  Verify the GPS maintains lock                                 
61. O:  Verify the airspeed and altitude values in the artificial horizon are 

reasonable values 
62. O:  Verify the roll, pitch, and heading angles shown in the artificial 

horizon are reasonable.  (may need to instruct SP to bank and change 
heading) 

63. O:  Navigate to the Settings > Autopilot Config screen (under Trims, 
Slews, and Feed Forward)  and observe  enter the Trim Airspeed, Trim 
Throttle, and Trim Angle of Attack (Pitch) [the trim angle of attack 
needs to be converted to radians (degree value / 57.3)] 

64. O:  Record maneuver start time, start data logging 
65. SP: Perform pitch doublet 
66. SP:  Recover CONDOR to trimmed level flight at 700 ft 

 

 

 

 

 

 

 

 

 

 

Trim Airspeed: _______________ 



 

 

96 

FT-03:  PROCEDURES Notes: Dur: 30 min 

67. O: Observe AoA/Pitch response, save m-file 

 

 

Determine Dutch Roll Natural Frequency 

Determine Dutch Roll Damping Factor 

 

68. O:  Navigate to Settings > Data Logs, select desired Roll & Yaw 
parameters for recording. Ensure data logger in Virtual Cockpit  is 
properly configured for  data acquisition 

69. O:  Verify the GPS maintains lock                                 
70. O:  Verify the airspeed and altitude values in the artificial horizon are 

reasonable values 
71. SP: Perform rudder doublet – right then left to the stops 
72. SP: Recover CONDOR to trimmed level flight at 700 ft 
73. O: Observe the number of overshoots in Virtual Cockpit display 
74. O:  Record time between peaks 

Trim Throttle: _______________ 

Trim AoA:_______________ 

 

 

Time:________ 
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FT-03:  PROCEDURES Notes: Dur: 30 min 

 

Determine Spiral Mode Response 

 

75. O:   Verify the GPS maintains lock                                 
76. O:  Verify the airspeed and altitude values in the artificial horizon are 

reasonable values 
77. SP:  Roll to 10 degrees Left bank 
78. O:  Record maneuver start time 
79. SP:  Release controls and allow deviation to occur 
80. SP:  Recover aircraft at either 40kts, 60 degree bank, or 15 seconds after 

start 
81. SP: Recover CONDOR to trimmed level flight at 700 ft 
82. O:  Record time to recovery 

 

83. SP:  Roll to 10 degrees Right bank 
84. O:  Record maneuver start time 
85. SP:  Release controls and allow deviation to occur 
86. SP:  Recover aircraft at either 40kts, 60 degree bank, or 15 seconds after 

 

 

 

 

 

Number of Overshoots:________ 

Time between Peaks:________ 

Time:________ 

Time to Recovery or Time to Double 

(left):________ 

Time:________ 

Time to Recovery or Time to Double 
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FT-03:  PROCEDURES Notes: Dur: 30 min 

start 
87. SP: Recover CONDOR to trimmed level flight at 700 ft 
88. O:  Record time to recovery  

(right):________ 

FT-04:  CONDOR Second Flight PID Tuning Test Card 
 

Preconditions:  

Autopilot installation and ground configuration procedures accomplished as described in Section 1 through Section 2.1 of the 

Procerus Installation and Configuration Guide Document Version 2.0, dated 10/27/08.  FT-01:  CONDOR First Flight PID Tuning 

Test Card complete. 

 

Configuration: 

Base airframe, ½ tank fuel,  30-lb 

 

Note:  Mission requires a safety pilot (SP), and operator (O).   

Objective:  
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1. The purpose of the second flight is to tune the rate damping servo loops.  The rate damping PID loops damp the aircraft rotation 
around the pitch, roll, and yaw axis. 

FT-04:  PROCEDURES Notes: Dur: 20 min 

Tuning Yaw Rate PID loop (Rudder only) Yaw Rate Kp 

89. O:  Disable rate damping PID Loops, navigate to the F5 Settings page > 
Autopilot Config > Mode Configuration > RC Mode > PID Loops 
(Level I Loops). Uncheck all rate boxes 

90. SP:  Switch to RC Mode 
91. O:  Verify RC Mode (control boxes grayed out) and in “Manual Mode” 
92. O:  Perform Launch Checklist  
93. SP:  Re-trim the CONDOR for level flight (if necessary) 
94. SP: Maintain altitude and keep the airspeed near the trim airspeed found in 

Flight 1 

 

95. O:  Navigate to (F5) Settings > PID Values screen. Enter .005 for Yaw 
Rate Kp.  
 

 

 

96. O:  Click the “Use Desired” check box under Tuning 
97. O:  Enter zero for the desired roll angle. The desired turn rate should also 

 

 

 

 

 

 

 

 

Trim Airspeed from Flight #1:  ___________ 

 
For most aircraft this value is between .005 and .2. This 
number is in radians of rudder deflection per radian second of 
yaw rate error.  
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be zero  
98. O:  Check “Yaw Rate” under Level 1 Loops and ensure all other loops are 

unchecked  
99. O:  Click “Upload loops”  

 

 

100. SP:  Disable RC Mode  
101. O:  Verify UAV Modes are not “grayed out” and Manual mode is 

green 
102. O:  Tune the Yaw Rate loop by increasing Yaw Rate Kp slowly 

(.05 increments) Increase the value of Yaw Rate Kp until small 
instabilities are noted in yaw and then lower the value by 25% (instabilities 
should go away).  Record the Yaw Rate Kp Value. 

 

 

103. O:  Enter a desired roll angle of 15 degrees in the desired roll angle 
box  

 

 

 

 

 

 
The autopilot is now setup such that when the pilot disables RC 
Mode, the Yaw Rate loop will be active  
Safety Pilot is still flying the aircraft 
 
 
 
As Kp is increased, the aircraft should feel more damped 
around the yaw axis. Use pilot feedback to verify that the 
aircraft is becoming more damped around the yaw axis. 
Yaw Rate Kp:  ___________ 
 
 
 
The desired turn rate that corresponds to a 15 degree roll will 
be indicated in the Desired Turn Rate Box  
 
 
Actual Roll Rate:  ______________ 
The roll angle does not have to track perfectly at this point. The 
roll angle controller will be tuned in flight 3 to improve the roll 
angle hold.  
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104. O:  Verify by observing the HSI that the aircraft actual roll angle is 
between 10 and 20 degrees.  Aircraft should be turning right.  Record the 
actual roll rate. 

 

 

 

105. O:  Command a 15 degree left bank (enter -15 in the desired roll 
angle box). Verify the aircraft turns left on the HSI. 

 

 

106. O:  Command 0 degrees bank to return the aircraft to level flight  
107. O:  Save the gains values to file with an incremented file name  

 

 

 
 
 
You may try a higher bank angle if desired.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For most aircraft this value is between .005 and .2. This 
number is in radians of rudder deflection per radian second of 
roll rate error.  
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Tuning Roll Rate PID loop (Roll Rate Kp) 

108. SP:  Switch to RC mode  
109. O:  Verify RC Mode (control boxes grayed out) and in “Manual 

Mode” 
110. SP: Maintain altitude and keep the airspeed near the trim airspeed 

found in Flight 1 
111. O:  Check “Roll Rate” and un-check “Yaw Rate” under Level 1 

Loops and ensure all other loops are unchecked  
112. O:  Click “Upload loops”  
113. O:  Navigate to (F5) Settings > PID Values screen. Enter .005 for 

Roll Rate Kp.  

 

 
 
 
 
 
 
As Kp is increased, the aircraft should feel more damped 
around the roll axis. Use pilot feedback to verify that the 
aircraft is becoming more damped around the roll axis. 
Roll Rate Kp:  ___________ 
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114. SP:  Disable RC Mode  
115. O:  Verify UAV Modes are not “grayed out” and Manual mode is 

green 
116. O:  Tune the Roll Rate loop by increasing Roll Rate Kp slowly 

(.05 increments) Increase the value of Roll Rate Kp until small 
instabilities are noted in roll and then lower the value by 25% (instabilities 
should go away).  Record the Roll Rate Kp Value. 

 

 

 

117. Save the gains values to file with an incremented file name 
 

 

For most aircraft this value is between .005 and .2. This 
number is in radians of elevator deflection per radian second of 
pitch rate error.  
 
 
 
 
 
 
 
As Kp is increased, the aircraft should feel more damped 
around the pitch axis. Use pilot feedback to verify that the 
aircraft is becoming more damped around the pitch axis. 
Pitch Rate Kp:  ___________ 
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Tuning Pitch Rate PID loop (Pitch Rate Kp) 

118. SP:  Switch to RC mode  
119. O:  Verify RC Mode (control boxes grayed out) and in “Manual 

Mode” 
120. SP: Maintain altitude and keep the airspeed near the trim airspeed 

found in Flight 1 
121. O:  Check “Pitch Rate, Roll Rate , and Yaw Rate”  under Level 1 

Loops and ensure all other loops are unchecked  
122. O:  Click “Upload loops”  
123. O:  Navigate to (F5) Settings > PID Values screen. Enter .005 for 

Pitch Rate Kp.  
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124. SP:  Disable RC Mode  
125. O:  Verify UAV Modes are not “grayed out” and Manual mode is 

green 
126. O:  Tune the Pitch Rate loop by increasing Pitch Rate Kp slowly 

(.05 increments) Increase the value of Pitch Rate Kp until small 
instabilities are noted in pitch and then lower the value by 25% 
(instabilities should go away).  Record the Pitch Rate Kp Value. 

 

 

 

127. Save the gains values to file with an incremented file name 
128. Land the CONDOR leaving power “ON” 
129. O:  “Update Flash” 
130. O:  Navigate to the Autopilot Config > Mode Config > RC Mode 

in Virtual Cockpit. 
131. O:  Check the PID Level 1 Loops  for pitch rate, roll rate, and yaw 

rate. 
132. O:  Click “Upload Config” 
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133. O:  Click “Update Flash” 

134. O:  Save the gains values to file with an incremented file name 

135.  
 

Card No. FT-04a  Level 3 Loops Level 2 Loops Level 1 Loops 

Descriptio

n 

CONDOR Inner Loop PID Tuning – Yaw Rate  

 

Hdg Fixed 

Dynamic-Waypoint 

 

 

Roll Fixed Input 

Roll Dyn. Input 

Heading 

 Roll 

 Roll Rate 

 Pitch 

 Pitch Rate 

 Yaw Rate 

Objective Tune yaw rate damping servo loop. 

  Tuning  

 

Pitch Fixed Input 

Pitch Dyn. Input 

 Altitude 

 Airspeed 

   Use Desired 

 Thr->Airspd 

 Thr->Alt 

 Thr->Climb/Alt 

 
FT-04a:  PROCEDURES Notes: Dur: 20 min 
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Tuning Yaw Rate PID loop (Rudder only) Yaw Rate Kp 

1. SP:  Switch to RC Mode 
2. O:  Verify RC Mode (control boxes grayed out) and in 

“Manual Mode” 
3. O:  Perform Launch Checklist  
4. SP:  Re-trim the CONDOR for level flight (if necessary) 
5. SP: Maintain altitude and keep the airspeed near the trim 

airspeed found in Flight 1 
6. O:  Navigate to (F5) Settings > PID Values screen. Enter 

.005 for Yaw Rate Kp.  
 

7. O:  Enter zero for the desired roll angle. The desired turn 
rate should also be zero  

8. O:  Click “Upload loops”  

 

9. SP:  Disable RC Mode  
10. O:  Verify UAV Modes are not “grayed out” and Manual 

mode is green 
11. O:  Tune the Yaw Rate loop by increasing Yaw Rate Kp 

slowly (.05 increments) Increase the value of Yaw Rate Kp 

 

 

 

 

 

Trim Airspeed from Flight #1:  ___________ 

 
For most aircraft this value is between .005 and .2. This number is in radians of 
rudder deflection per radian second of yaw rate error.  
 

 

The autopilot is now setup such that when the pilot disables RC Mode, the Yaw 
Rate loop will be active  
 
 
Safety Pilot is still flying the aircraft 
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until small instabilities are noted in yaw and then lower the 
value by 25% (instabilities should go away).  Record the 
Yaw Rate Kp Value. 

 

12. O:  Enter a desired roll angle of 15 degrees in the desired 
roll angle box  

 

13. O:  Verify by observing the HSI that the aircraft actual roll 
angle is between 10 and 20 degrees.  Aircraft should be 
turning right.  Record the actual roll rate. 

 

14. O:  Command a 15 degree left bank (enter -15 in the 
desired roll angle box). Verify the aircraft turns left on the 
HSI. 

 

15. O:  Command 0 degrees bank to return the aircraft to level 
flight  

16. O:  Save the gains values to file with an incremented file 
name  

As Kp is increased, the aircraft should feel more damped around the yaw axis. 
Use pilot feedback to verify that the aircraft is becoming more damped around 
the yaw axis. 
Yaw Rate Kp:  ___________ 
 
The desired turn rate that corresponds to a 15 degree roll will be indicated in the 
Desired Turn Rate Box  
 
 
Actual Roll Rate:  ______________ 
The roll angle does not have to track perfectly at this point. The roll angle 
controller will be tuned in flight 3 to improve the roll angle hold.  
 
 
You may try a higher bank angle if desired.  
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Tuning Roll Rate PID loop (Roll Rate Kp) 

17. SP:  Switch to RC mode  
18. O:  Verify RC Mode (control boxes grayed out) and in 

“Manual Mode” 
19. SP: Maintain altitude and keep the airspeed near the trim 

airspeed found in Flight 1 
20. O:  Check “Roll Rate” and un-check “Yaw Rate” under 

Level 1 Loops and ensure all other loops are unchecked  
21. O:  Click “Upload loops”  
22. O:  Navigate to (F5) Settings > PID Values screen. Enter 

.005 for Roll Rate Kp.  

 
 
 
 
 
For most aircraft this value is between .005 and .2. This number is in radians of 
rudder deflection per radian second of roll rate error.  
 
 
 
 
 
 
As Kp is increased, the aircraft should feel more damped around the roll axis. 
Use pilot feedback to verify that the aircraft is becoming more damped around 
the roll axis. 
Roll Rate Kp:  ___________ 
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23. SP:  Disable RC Mode  
24. O:  Verify UAV Modes are not “grayed out” and Manual 

mode is green 
25. O:  Tune the Roll Rate loop by increasing Roll Rate Kp 

slowly (.05 increments?) Increase the value of Roll Rate Kp 
until small instabilities are noted in roll and then lower the 
value by 25% (instabilities should go away).  Record the Roll 
Rate Kp Value. 

 

 

 

26. Save the gains values to file with an incremented file name 
 

 
 
 
 
 
 
 
 
 
 
For most aircraft this value is between .005 and .2. This number is in radians of 
elevator deflection per radian second of pitch rate error.  
 
 
 
 
 
 
 
As Kp is increased, the aircraft should feel more damped around the pitch axis. 
Use pilot feedback to verify that the aircraft is becoming more damped around 
the pitch axis. 
Pitch Rate Kp:  ___________ 
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Tuning Pitch Rate PID loop (Pitch Rate Kp) 

27. SP:  Switch to RC mode  
28. O:  Verify RC Mode (control boxes grayed out) and in 

“Manual Mode” 
29. SP: Maintain altitude and keep the airspeed near the trim 

airspeed found in Flight 1 
30. O:  Check “Pitch Rate, Roll Rate , and Yaw Rate”  under 

Level 1 Loops and ensure all other loops are unchecked  
31. O:  Click “Upload loops”  
32. O:  Navigate to (F5) Settings > PID Values screen. Enter 
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.005 for Pitch Rate Kp.  

 

 

33. SP:  Disable RC Mode  
34. O:  Verify UAV Modes are not “grayed out” and Manual 

mode is green 
35. O:  Tune the Pitch Rate loop by increasing Pitch Rate Kp 

slowly (.05 increments?) Increase the value of Pitch Rate 
Kp until small instabilities are noted in pitch and then lower 
the value by 25% (instabilities should go away).  Record the 
Pitch Rate Kp Value. 

 

 

 

36. Save the gains values to file with an incremented file name 
37. Land the CONDOR leaving power “ON” 
38. O:  “Update Flash” 
39. O:  Navigate to the Autopilot Config > Mode Config > RC 



 

 

113 

FT-04a:  PROCEDURES Notes: Dur: 20 min 

Mode in Virtual Cockpit. 
40. O:  Check the PID Level 1 Loops  for pitch rate, roll rate, 

and yaw rate. 
41. O:  Click “Upload Config” 

42. O:  Click “Update Flash” 

43. O:  Save the gains values to file with an incremented file 
name 

 

 

FT-05:  CONDOR Third Flight PID Tuning Test Card 
 

Preconditions:  

Autopilot installation and ground configuration procedures accomplished as described in Section 1 through Section 2.1 of the 

Procerus Installation and Configuration Guide Document Version 2.0, dated 10/27/08.  FT-01:  CONDOR First Flight PID Tuning 

Test Card and FT-02:  CONDOR Second Flight PID Tuning Test Card complete.  PID gains loaded from FT-02. 

 

Configuration: 
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Base airframe, ½ tank fuel,  30-lb 

 

Note:  Mission requires a safety pilot (SP), and operator (O).   

Objective:  

1. The purpose of the third flight is to tune the inner attitude hold loops and the outer airspeed and altitude hold PID loops. 

FT-05  PROCEDURES Notes: Dur: 30 min 

Tuning Roll PID loop (Roll Kp) 

1. SP:  Switch to RC Mode 

2. O:  Verify RC Mode (control boxes grayed out) and in “Manual Mode” 

3. O:  Perform Launch Checklist (skip step 17 in launch checklist) 

4. SP:  Re-trim the CONDOR for level flight (if necessary) 

5. SP: Maintain altitude and keep the airspeed near the trim airspeed found in 
Flight 1 

 

 

6. O:  Navigate to (F5) Settings > PID Values screen. Enter zero for Roll Ki and         
enter .01 for Roll Kp. 

 

 

 

 

 

 

 

 

 

Trim Airspeed from Flight #1:  ___________ 
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7. O:  Click the “Use Desired” check box under Tuning 

8. O:  Enter zero for the desired roll angle. The desired yaw rate should also be 
zero.  

9. O:  Check “Yaw Rate and Roll” under Level 1 Loops and ensure all other loops are 
unchecked  

10. O:  Click “Upload loops”  

11. SP:  Disable RC Mode  

12. O:  Verify UAV Modes are not “grayed out” and Manual mode is green 

13. O:  Tune the Roll PID loop by increasing Roll Kp slowly (.2 increments?). As Kp is 
increased, the aircraft should increasingly level itself in the roll axis.  After each 
Roll Kp change, instruct the pilot to disturb the aircraft in the roll axis by giving 
rudder input. The aircraft should fight the pilot and return to level immediately 
when the roll stick is released. If this is the case, the roll loop is tuned ok.  Record 
Roll Kp value. 

 

14. O:  Enter a desired roll angle of 15 degrees in the desired roll angle box  

 

 

 

15. O:  Verify by observing the HSI that the aircraft actual roll angle is close to 15 
degrees. 

 

16. O:  Command a 15 degree left bank (enter -15 in the desired roll angle box). 
Verify the aircraft turns left on the HIS 

For most aircraft this value is between .01 and 1. This number 
is in radians of rudder deflection per radian roll angle error.  
 
 
 
 
 
 
 
 
 
The autopilot is now setup such that when the pilot disables RC 
Mode, the Yaw Rate and Roll loops will be active  
 
Safety Pilot is still flying the aircraft 
 
 
 
 
 
 
Roll Kp:  ___________ 
 
 
 
You should see the desired turn rate ramp up to the yaw rate 
corresponding to a 15 degree roll angle at the current airspeed  
 
 
 
 
 
You may try a higher bank angle if desired.  
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17. O:  Command 0 degrees bank to return the aircraft to level flight  

18. O:  If instabilities were noticed in roll then reduce the Roll Kp gain by 25% and 
repeat step 14 – 17 until instabilities have reduced. 

 

 

 

19. Save the gains values to file with an incremented file name.  

 

 

 

 

 

Tuning Pitch PID loop (Pitch Kp) 

20. SP:  Switch to RC mode  

 
 
 
 
It is more important to have an aircraft that responds slowly 
than to have instabilities.  
 
 
 
Since there is still more gain tuning to do, keep the Roll Ki at 
zero for now. Some steady state error in roll is acceptable. You 
can tune the roll Ki later when pilot-in-the-loop inputs are no 
longer needed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
For most aircraft this value is between .01 and 1  
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21. O:  Verify RC Mode (control boxes grayed out) and in “Manual Mode” 

22. SP: Maintain altitude and keep the airspeed near the trim airspeed found in 
Flight 1 

23. O:  Navigate to (F5) Settings > PID Values screen and enter zero for Pitch Ki and 
.01 for Pitch Kp 

 

 

 

24. O:  Click the “Use Desired” check box under Tuning 

25. O:  In the PID loop window under Level 2 Loops ensure Pitch Cmd is “Pitch Fixed 
Input."  

26. O:  Enable or Check-on  all Level 1 Loops (Roll, Roll Rate, Pitch, Pitch Rate, and 
Yaw Rate) 

27. O:  Click “Upload Loops” 

28. O:  Observe the current average pitch angle (level flight pitch angle) on the HSI. 
Enter this value for the desired pitch and record the value. 

 

 

 
 
 
 
 
 
Observed average pitch angle:   ____________ 
If the desired pitch angle is immediately overwritten, re-check 
that Level 2, “Pitch Fixed input” is clicked  
 
 
 
 
 
 
 
If during the tuning procedure the aircraft is losing 

altitude, increase the desired pitch, or have the pilot 

take over and climb the aircraft to a safe altitude.  

 
 
 
 
 
The aircraft should respond in a timely fashion to desired pitch 
commands without showing signs of instabilities. It is more 
important to have an aircraft that responds slowly than to have 
instabilities.  
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29. SP:  Disable RC Mode  

30. O:  Verify UAV Modes are not “grayed out” and Manual mode is green 

31. O:  Tune the pitch PID loop by increasing Pitch Kp slowly (.05 increments?)  As Kp 
is increased, the aircraft should increasingly level itself in the Pitch axis.  After 
each Pitch Kp change, instruct the pilot to disturb the aircraft in the pitch axis by 
giving elevator input. The aircraft should fight the pilot and return to level 
immediately when the elevator stick is released. 

 

 

32. O:  If instabilities were noticed in the pitch axis then reduce the Pitch Kp gain by 
25% and continue to observe pilot disruption for instabilities.  Repeat 25% 
decrease until instabilities have reduced.  Record Pitch Kp 

 

 

 

 

 
Pitch Kp:  ___________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because this is an outer PID loop that is governed by standard 
aircraft dynamics, little tuning may be required. The units of 
this loop are radians of desired pitch per m/s of airspeed error. 
 
 
 
 
 
 
 
 
 
 
The autopilot is now setup such that when the pilot disables RC 
Mode, Manual Mode will be active.  
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33. O:  Enter a variety of pitch angles for desired pitch. Ensure the aircraft 
responds accordingly. If not repeat steps 31 and 32  

 

34. O:  At this point, the user may choose to add a little bit of Pitch Ki gain. 
This will aid in tracking at larger pitch angles.  The down side is that the 
integrator will fight the pilot inputs.  If Ki is added, instruct the pilot to 
keep the elevator stick neutral while the Pitch loop is enabled.  

35. O:  Save the gains values to file with an incremented file name 

 

Tuning Pitch from Airspeed PID loop (Pitch<-airspeed Kp) 

36. SP:  Switch to RC mode  
37. O:  Verify RC Mode (control boxes grayed out) and in “Manual Mode” 
38. SP: Maintain altitude and keep the airspeed near the trim airspeed found in 

Flight 1 
39. O:  Navigate to (F5) Settings > PID Values screen and enter zero for 

Pitch Ki and      .02 for Pitch<-Airspeed Kp  
40. O:  Click the “Use Desired” check box under Tuning 
41. O:  Enable all tuned loops at this time. Enable Level 2 Pitch from Airspeed 

Loop (Ensure “Pitch Dyn Input” is visible. If it isn’t, click “Pitch Fixed 
Input” once. Under “Pitch Dyn Input”, select “Airspeed” and ensure that 

 
 
Typically Kp for this loop does not exceed 0.1  
 

Pitch<-airspeed Kp: ______________ 

 
 
 
 
Ki for this loop is typically around ½ the value of 

Kp.  

 
 
 
 
 
 
 
 
At this point, Manual Mode is tuned.  
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“Auto Alt” is unchecked.  

42. O:  Click “Upload Loops” 
43. SP:  Disable RC Mode  
44. O:  Verify UAV Modes are not “grayed out” and Manual mode is green 
45. O:  Increase the Pitch<-airspeed Kp until slow oscillation in pitch is 

noticed. Reduce the Kp gain by 25% or until oscillations are no longer 
present.  Not the value of Pitch<-airspeed Kp. 

 

 

46. O: Now, with Kp tuned, slowly increase Ki.  

 

 

47. SP:  Increase the throttle and verify the aircraft pitches up to decrease the 
airspeed. Decrease the throttle and verify the aircraft pitches down to 
maintain the desired airspeed. 

48. O:  Enter a higher airspeed for the desired airspeed. Verify the aircraft 
responds and tracks.  

49. O:  If the aircraft is sluggish to respond to changes in desired airspeed, you 
may wish to increase the magnitude of the Pitch->Velocity Feed Forward 

 
 
 
 
 
 
 
 
 
 
This loop is used to maintain airspeed while in level flight. 
Because this is an outer PID loop that is governed by standard 
aircraft dynamics, little tuning may be required. The units of 
this loop are percent throttle per m/s of airspeed error. 
 
In addition to the Kp and Ki values, the user may wish to tune 
the throttle slew rate limit and throttle->velocity feed forward 
value. The slew rate is the maximum rate of change of throttle 
that can be commanded by the throttle PID loops. This value is 
in percent/second. It is typically between 10 and 35. This value 
prevents the autopilot from changing the throttle setting too 
quickly. 
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Gain value found under Autopilot Config > Feed Forward and Trims > 
Pitch.  

 

50. Save the gains values to file with an incremented file name.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tuning Throttle from Airspeed PID loop (Throttle-<airspeed Kp) 

 

 
 
 
 
This throttle value is coming from the RC controller (it is the 
throttle that the pilot is currently commanding to maintain level 
flight).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The autopilot is now setup such that when the pilot disables RC 
Mode, the autopilot will hold zero roll angle and maintain 
airspeed using the throttle.  
 
The pilot will be responsible for keeping pitch near level and 
holding altitude.  
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51. SP:  Switch to RC mode  
52. O:  Verify RC Mode (control boxes grayed out) and in “Manual Mode” 
53. SP: Maintain altitude and keep the airspeed near the trim airspeed found in 

Flight 1 

 

 

 
 
 
 
 
 
 
 
 
Throttle-<airspeed Kp:__________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Throttle from Altitude loop is used for transition the 
aircraft to different altitudes. Once the desired altitude is 
reached, the autopilot will switch to controlling altitude with 
pitch. Because of this, do not expect perfect altitude hold 
during this procedure. You will likely encounter a phugoid 
behavior in level flight. This behavior is characterized by a 
shallow dive with an increase airspeed followed by climbing 
with decreased airspeed. This behavior will be cleaned up with 
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54. O:  Double check the trim throttle setting. With the aircraft flying level in 
RC Mode, navigate to the Servos window in Virtual Cockpit. Click 
“Send/Req” in the Desired Servo Position window. The current throttle 
servo position can be read in the Des Servo Position column. Verify this 
value is similar to the value entered previously in F-CONDOR-01 seep #21 
as the Throttle Trim.  This can also be found in Autopilot Config > Feed 
Forward and Trims > Throttle > Trim Throttle  
 

55. O:  In the PID Values window enter a value near 10 for Throttle<-Airspd 
Kp. Set Throttle<-Airspd Ki=0  

 

56. O:  Click the “Use Desired” check box under Tuning 
 

57. O:  Pre-select Manual Mode by clicking “Man” in the UAV Modes 
window (Click “Man” again even if already selected)  

the Pitch from Altitude Loop. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The autopilot is now setup such that when the pilot disables RC 
Mode, the autopilot will hold zero roll angle and maintain 
airspeed pitch. The altitude will be maintained using throttle.  
 
 
 
 
 
 
 
 
 
 
 
 
 
The tracking does not have to be perfect as this loop is only 
used for transitioning to different altitude. The PID loop 
responsible for holding altitude will be tuned next.  
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58. O:  Select “Pitch fixed input” in level 2 pitch. Disable Pitch in Level 1  
 

59. O:  Select Thr->Airspeed Level 1 Loop and Leave all other loops as they 
were for Manual Mode.  
 

 

60. SP:  Disable RC Mode 

  

61. O:  Verify Manual Mode should show green on the UAV Mode indicator.  
 

62. O:  Verify the following PID loops are enabled and that the Upload Loops 
button is not red:  
a. Level 1 Roll, Roll Rate, Pitch Rate, Thr->Airspd and Yaw Rate (  

b. Level 2: Roll Fixed input, Pitch Fixed input.  

63. O:  If the aircraft is trimmed is should maintain near level flight at cruise 
speed using the trim throttle value entered in Autopilot Config > Feed 

Throttle<-Altitude Kp:  ___________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As soon as the autopilot can reasonably control the aircraft 

(i.e. hold altitude and navigate to home or rally), enable the 

Loss of Comm failsafe. Disable the Flight Termination failsafe 
unless it is required for safety or local regulation. 
 
 
 
 
 
 
At this point, the Pitch, Roll, Pitch<-Airspeed, Throttle<-
Airspeed, Throttle <-Altitude, and all rate damping loops 
should be tuned. It is now time to move to the Pitch from 
Altitude PID loop. Because this is an outer PID loop that is 
governed by standard aircraft dynamics, little tuning may be 
required. The units of this loop are radians of desired pitch per 
meter of altitude error. This loop is a little tricky as the pitch<-
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Forward and Trims > Throttle. Verify level flight at cruise speed. 
64. O:  Tune Throttle-<airspeed Kp such that the aircraft tracks desired 

airspeed.  Record value to the right. 

 

65. O:  If the throttle seems to over modulate decrease the throttle slew rate. 
This is found in Autopilot Config > Feed Forward and Trims > Throttle 
> Slew Rate.  

66. O:  As the pilot pitches up, the throttle should increase to track airspeed. 
As the pilot pitches down the throttle should reduce. Try commanding 
different airspeeds and verify the UAV tracks the desired airspeed.  

67. O:  It may be desirable to add some integral gain to compensate for 
reduced thrust as the batteries run down. Try adding between .1 and 1 for 
Throttle<-Airspd Ki.  

68. O:  Save the gains values to file with an incremented file name.  

 

 

Tuning Throttle form Altitude PID loop (Throttle<-Altitude Kp) 

 

altitude limit also needs to be tuned. If the limit is too high, this 
loop may command a pitch that will stall the aircraft. If it is too 
low, the aircraft will not be able to maintain altitude. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The autopilot is now setup such that when the pilot disables RC 
Mode, the aircraft will hold altitude with pitch and airspeed 
with throttle.  
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FT-05  PROCEDURES Notes: Dur: 30 min 

 

 

 

 

 

69. SP:  Switch to RC mode  
70. O:  Verify RC Mode (control boxes grayed out) and in “Manual Mode” 
71. SP: Maintain altitude and keep the airspeed near the trim airspeed found in 

Flight 1 
72. O:  Enter a value of 1.5 for Throttle<-Altitude Kp. Set Throttle<-

Altitude Ki=0  
73. O:  Click the “Use Desired” check box under Tuning 
74. O:  Pre-select Manual Mode by clicking “Man” in the UAV Modes 

window (Click “Man” again even if already selected)  
75. O:  Select Thr->Altitude Level 1 Loop.  Leave all other loops as they were 

for Manual Mode. 
 

 
 
 
It may be helpful to look at onboard video for this 
purpose. Typically Kp for this loop does not exceed 1.  
 
Pitch<-Altitude Kp:  _______________ 
 
 
 
 
During the tuning process keep an eye on the desired pitch. If 
the aircraft is below the desired altitude and the desired pitch is 
pegged with the aircraft still descending, then the pitch<-
altitude limit needs to be increased to allow the altitude loop to 
command a higher pitch angle.  
Pitch<-Altitude Ki:  _______________ 
 
 
 
 
 
 
 
 
 
Larger increments may not be necessary as the altitude tracker 
is designed to handle those with constant airspeed climbs and 
descents.  
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FT-05  PROCEDURES Notes: Dur: 30 min 

  

76. O:  Enter the current indicated altitude for the desired altitude.  
77. SP:  Disable RC Mode 

  

78. O:  Verify Manual Mode should show green on the UAV Mode indicator.  
 

79. O:  If the aircraft is trimmed it should maintain near level flight at cruise 
speed using the trim throttle value entered in Autopilot Config > Feed 
Forward and Trims > Throttle. 
 

80. O:  Tune Throttle<-Altitude Kp such that the aircraft tracks the desired 
altitude.  Note the final Throttle<-Altitude Kp value to the right 
 

 

 

 

 

81. O:  If the throttle seems to over modulate decrease the throttle slew rate. 
This is found in Autopilot Config > Feed Forward and Trims > Throttle 
> Slew Rate.  

 
 
 
 
 
 
 
 
If all went well and per the instructions, then Altitude Mode is 
tuned.  
 
 
 
 
 
 
 
 
Ensure all PID gains and flash values have been written to file 
and also all changes have saved in an appropriately named file. 
(You don’t want all your work during Flight 3 to be lost!) 
 
As soon as the autopilot can reasonably control the aircraft 

(i.e. hold altitude and navigate to home or rally), enable the 

Loss of Comm failsafe. Disable the Flight Termination failsafe 
unless it is required for safety or local regulation. 
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FT-05  PROCEDURES Notes: Dur: 30 min 

82. O:  With the aircraft holding altitude reasonably well (a small phuguoid is 
ok at this point). Command the aircraft to a higher altitude (maybe 30 
meters up). The throttle should increase and the aircraft should climb to the 
new altitude. Adjust the Throttle<-Altitude Kp so that this occurs. \ 

83. O:  Next try commanding the aircraft to a lower altitude.  
84. O:  It may be desirable to add some integral gain to compensate for 

reduced thrust as the batteries run down. Try adding between .1 and 1 for 
Throttle<-Altitude Ki.  

85. O:  Stop tuning when you are confident that the aircraft can reliably 
transition to different altitudes using the throttle.  

86. O:  Save the gains values to file with an incremented file name.  
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FT-05  PROCEDURES Notes: Dur: 30 min 

Tuning Pitch from Altitude PID loop (Pitch<-Altitude Kp) 

 

 

 

 

 

 

 

87. SP:  Switch to RC mode  
88. O:  Verify RC Mode (control boxes grayed out) and in “Manual Mode” 
89. SP: Maintain altitude and keep the airspeed near the trim airspeed found in 

Flight 1 
90. O:  Enter a number around .04 as a starting place for Pitch<-Altitude Kp. 

Start with Ki=0.  
91. O:  Click the “Use Desired” check box under Tuning 
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FT-05  PROCEDURES Notes: Dur: 30 min 

 

92. O:  Pre-select Manual Mode by clicking “Man” in the UAV Modes 
window (Click “Man” again even if already selected)  
 

93. O:  Select Thr->Airspd level 1 loop. Ensure Level 2 “Pitch Dyn Input” 
button is visible and select Altitude. Ensure “Auto Alt” is unchecked.  
 

94. O:  Click “Upload Loops”  
 

95. O:  Enter the current altitude for the desired altitude.  
 

 

 

96. SP:  Disable RC Mode 

  

97. O:  Verify Manual Mode should show green on the UAV Mode indicator 
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FT-05  PROCEDURES Notes: Dur: 30 min 

 

98. O:  Verify the aircraft should hold altitude, airspeed, and level roll  
 

99. O:  Increase the Pitch<-Altitude Kp until an oscillation in pitch is noticed. 
Reduce the Kp gain by 25% or until oscillations are no longer noticed.  
Record Pitch<-Altitude Kp to the right. 
 

 

 

100. O:  Now, with Kp tuned, slowly increase Ki. Ki should be small on 
this loop (< 1/15 of Kp) to prevent integrator windup for large altitude 
errors.  Record Pitch<-Altitude Ki to the right. 
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FT-05  PROCEDURES Notes: Dur: 30 min 

101. O:  Once it seems that the aircraft is holding the current desired 
altitude, change the desired altitude by increments of 5 meters. Verify the 
aircraft tracks the new desired altitude.  

102. O:  Once the aircraft is responding well to small increments in 
desired altitude, try bigger increments (5 to 20 meters). 

 

 

 

 

103. O: Once the altitude loop is sufficiently tuned, you may test 
Altitude Mode.  

104. O:  Click Altitude Mode and verify that the aircraft holds altitude 
and airspeed (current alt, cruise airspeed).  

105. O:  Enter a desired altitude 20 meters higher than the current 
altitude. Verify the Altitude Tracker goes to Climb Mode (Artificial 
Horizon).  

106. O:  Once the desired altitude is reached, the Altitude Tracker 
should go to Hold Mode.  

107. O:  Enter a desired altitude 20 meters below the current altitude. 
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FT-05  PROCEDURES Notes: Dur: 30 min 

The altitude tracker should respond with Auto Descent then Altitude hold.  

 

108. O: Save the gains values to file with an incremented file name.  
109. SP:  Land the aircraft in RC Mode.  Do not turn the autopilot off 

 

 

FT-06:  CONDOR Fourth Flight PID Tuning Test Card 
 

Preconditions:  

Autopilot installation and ground configuration procedures accomplished as described in Section 1 through Section 2.1 of the 

Procerus Installation and Configuration Guide Document Version 2.0, dated 10/27/08.  FT-01:  CONDOR First Flight PID Tuning 

Test Card complete, FT-02: CONDOR Second Flight PID Tuning Test Card complete, and FT-03: CONDOR Third Flight PID 

Tuning Test Card complete.  

 

Configuration: 
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Base airframe, ½ tank fuel,  30-lb 

 

Note:  Mission requires a safety pilot (SP), and operator (O).   

 

Objective:  

1. Verify that waypoint and loiter navigation work correctly.  

 

FT-06:  PROCEDURES Notes: Dur: 20 min 

Navigation Verification 

1. O:  Verify that fail safes enabled (F5) Settings > Fail Safes . ‘On’ selected for fail 
safes and values inputted as stated in UAV Preflight with RC (Cold Start) Checklist 
(step 39).  

2. O:  Generate ‘rectangle’ flight plan with of altitude 300 ft (150 m) and airspeed 
near the trim speed found in Flight 1. Ensure waypoints are at least 250 meters 
apart.  

3. O:  Verify the lateral and fore/aft balance of the airplane is proper    

 

 

 

 
 
 
 
If the lateral balance of the airplane is off, the airplane will 
tend to always roll one way when entering deep stall or during 
deep stall. The lateral balance must be correct for a stable deep 
stall.  
 
The fore/aft CG must not be too far forward (nose heavy), or 
the airplane will not deep stall.  
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FT-06:  PROCEDURES Notes: Dur: 20 min 

 

 

 

4. SP:  Switch to RC Mode 
5. O:  Verify RC Mode (control boxes grayed out) and in “Manual Mode” 
6. O:  Perform Launch Checklist (skip step 17 in launch checklist for RC 

mode takeoff) 
7. SP:  Re-trim the CONDOR for level flight (if necessary) 
8. SP:  Maintain altitude and keep the airspeed near the trim airspeed found in 

F-CONDOR-01 test card. 
9. O:  Select NAV mode  
10. O:  Disable RC mode 
11. O:  Verify that CONDOR navigates to the first waypoint at desired 

altitude.  
12. O:  Upon reaching first waypoint, verify that CONDOR begins navigation 

to the second waypoint at the desired altitude.  

a. If the CONDOR overshoots its path or is delayed in getting back on 
the path, adjust the x-track hand distance (F5 Settings > Autopilot 
Config > Mode Config > Navigation Mode > X-Track Hand 
Dist). Decreasing the value will cause the aircraft to turn in more to 

 
 

 
 
 
 
Trim Airspeed from F-CONDOR-01:  

___________ 

 

 

 

 
 
X-track distance (m):  ___________ 
 
 
 
 
 
Final X-track distance(m): _________ 
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FT-06:  PROCEDURES Notes: Dur: 20 min 

get on path.  

b. If oscillations around the path occur, increase the x-track hand 
distance (F5 Settings > Autopilot Config > Mode Config > 
Navigation Mode > Cross Track Hand Dist(m)). 

c. Record x-track distance.  

13. O:  Generate a loiter flight plan.  
14. O:  Upload loiter flight plan after waypoint navigation verification 

complete. Record any changes for the X-track distance.  
15. O:  Verify the CONDOR loiters correctly.  

Tuning Deep Stall 

16. O:  Generate ‘rectangle’ flight plan with of altitude 500 ft (150 m) and 
airspeed near the trim speed found in Flight 1. Ensure waypoints are at 
least 250 meters apart. Set Rally Point at Flight 1 airspeed, set altitude to 
500 ft, and break height alt to 450 ft. Upload flight plan.  

17. O:  Navigate to (F5) Settings > Mode Config > Land Mode screen. 
Enter -0.05  for Deep Stall Fixed Pitch and enter -0.19 for Deep Stall 
Elevator Offset.  

18. O: Navigate CONDOR to Rally Point.  
19. O:  Command CONDOR to land.   
20. O:  Watch the vehicle enter deep stall and transition to a steady state deep 

stall. 
21. O:   If you are using a fixed pitch deep stall and not getting stable 

 

 

Values based on Kestrel Installation/Configuration Guide. 
Values are in radians. 
 
 
 
The airplane should become stable within a few oscillations 
and remain stable when tuned correctly. If the oscillations at 
the start of the deep stall are very large, decrease the elevator 
offset and repeat. If the oscillations do not subside during the 
descent, make the fixed pitch angle more negative. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Deep Stall Fixed Pitch: _________ 
 
Deep Stall Elevator Offset: _________ 
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FT-06:  PROCEDURES Notes: Dur: 20 min 

characteristics, change the values for your deep stall fixed pitch and 
elevator offset. 

 

 

 

22. O/SP:  Abort the deep stall by going to NAV mode or RC control before 
about 40 meters (130 ft) alt and climb to 500 ft.  

23. O:  Repeat steps 17 to 21 until deep stall oscillations have almost subsided.  
24. O:  Navigate to PID tuning screen for pitch.  
25. O:  Command CONDOR to land.  
26. O:  When the vehicle reaches steady state deep stall, further tune values 

using PID tuning screen.  
27. O:  Abort the deep stall by going to NAV mode or RC control before about 

40 meters (130 ft) alt and climb to 500 ft. 
28. O:  Repeat steps 23 to 26 until deep stall tuning complete. Record Deep 

Stall Fixed Pitch value and Deep Stall Elevator Offset.  
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FT-06:  PROCEDURES Notes: Dur: 20 min 

29. SP:  In RC Mode, Land the CONDOR leaving power “ON” 
30. O:  “Update Flash” 
31. O:  Save the gains values to file with an incremented file name 

 

 

 

 

 

FT-07:  CONDOR Throttle PID Test Card 
 

Preconditions:  

Autopilot installation and ground configuration procedures accomplished as described in Section 1 through Section 2.1 of the 

Procerus Installation and Configuration Guide Document Version 2.0, dated 10/27/08.  CONDOR pre-flight procedures complete.  

Runway setup for takeoff test accomplished.  
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Configuration: 

Base airframe, ½ tank fuel,  30-lb 

 

Note:  Mission requires a safety pilot (SP), and operator (O).  The entire flight will be conducted in RC Mode  

Objective:  

4. Evaluate throttle PID parameters and/or obtain acceptable values 
 

FT-07:  PROCEDURES Notes: Dur: 15 min 

 

Throttle PID  Determination 

136. O:  Disable rate damping PID Loops, navigate to the F5 Settings 
page > Autopilot Config > Mode Configuration > RC Mode > PID 
Loops (Level I Loops). Uncheck all rate boxes 

137. SP:  Switch to RC Mode 
138. O:  Verify RC Mode (control boxes grayed out)  and in “Manual 

Mode” 
139. O:  Perform Launch Checklist  
140. SP:  Trim the CONDOR for level flight at 600-ft 
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FT-07:  PROCEDURES Notes: Dur: 15 min 

141. SP: Fly a racetrack obit at constant altitude and airspeed 
142. O:   Verify the GPS maintains lock                                 
143. O:  Verify the airspeed and altitude values in the artificial horizon 

are reasonable values 
144. O:  Verify the roll, pitch, and heading angles shown in the 

artificial horizon are reasonable.  (may need to instruct SP to bank and 
change heading) 

145. O:  Switch to autopilot altitude- hold mode for 600-ft 
146. O:  Input new altitude parameter of 700-ft (100-ft altitude step) 
147. O:  Send altitude step command to aircraft, note start time of 

maneuver and time to complete maneuver. Note maneuver velocity 
148. SP:  Switch to RC Mode 
149. O:  Verify RC Mode (control boxes grayed out)  and in “Manual 

Mode” 
150. SP:  Recover CONDOR to trimmed level flight at 700 ft 
151. O/SP:  Repeat steps 2-15 for 700-800-ft 
152. SP:  Land the aircraft manually 

 

 

 

 

 

 

 

 

 

 

Maneuver Time:_____________ 

Maneuver Velocity: ___________ 
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FT-08:  CONDOR Takeoff Performance Test Card 
 

Preconditions:  

Autopilot installation and ground configuration procedures accomplished as described in Section 1 through Section 2.1 of the 

Procerus Installation and Configuration Guide Document Version 2.0, dated 10/27/08.  CONDOR pre-flight procedures complete.  

Runway setup for takeoff test accomplished.  

 

Configuration: 

Base airframe, 35-lb Gross Weight, incremental thereafter.  Fuel – ½ tank or as needed. 

 

Note:  Mission requires a safety pilot (SP), and operator (O).  The entire flight will be conducted in RC Mode  

Objective:  

5. Determine Condor takeoff distance variance with weight 
6. Determine Condor takeoff speed variance with weight 

 

FT-08:  PROCEDURES Notes: Dur: 15 min 
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FT-08:  PROCEDURES Notes: Dur: 15 min 

 

Takeoff  Performance 

153. O:  Ensure runway setup is complete 
154. SP:  Switch to RC Mode 
155. O:  Verify RC Mode (control boxes grayed out)  and in “Manual 

Mode” 
156. O:  Perform Pre-Flight Checklist, ensure weight and CG 

appropriate for test 
157. O:  Verify runway and airspace clearance 
158. O:  Note wind speed and direction 
159. SP:  Taxi downwind min throttle 
160. SP:   Turn aircraft 180 deg or until suitable upwind takeoff 

orientation 
161. O:  Note takeoff starting location 
162. SP:  Advance throttle until max (or safe level) for takeoff – hold 

until lift off 
163. O:  Note velocity at takeoff 
164. O:  Note distance until wheels off the ground        
165. SP:  Recover CONDOR to trimmed level flight at 700 ft 

 

 

 

 

 

 

 

Wind Speed:________                     

Wind Direction:________ 
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FT-08:  PROCEDURES Notes: Dur: 15 min 

166. SP: Land CONDOR 
167. O/SP:  Repeat steps 1-14 for each weight/CG configuration 
168. SP/O: Proceed to test car FT-01 

 

Takeoff velocity:________                  

Takeoff distance:________                  
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